RETROFIT NOISE BARRIER STUDY

STATE ROUTE 14 FROM HILLCREST AVENUE TO MATTHEW AVENUE IN THE CITY OF ROSAMOND

KERN COUNCIL OF GOVERNMENTS

RETROFIT NOISE BARRIER STUDY

STATE ROUTE 14 FROM HILLCREST AVENUE TO MATTHEW AVENUE IN THE CITY OF ROSAMOND

KERN COUNCIL OF GOVERNMENTS

Prepared for:

Kern Council of Governments 1401 19th Street Suite 300 Bakersfield, CA 93301 (661) 861-2191

Prepared by:

LSA Associates, Inc. 5084 N Fruit Avenue, Suite 103 Fresno, California 93711 (559) 490-1210

TABLE OF CONTENTS

I. EXECUTI	VE SUMMARY	.1
	T NOIGE DADDIED CTUDY	_
	T NOISE BARRIER STUDY	
	INTRODUCTION	
	STUDY DESCRIPTION	
C .	FUNDAMENTALS OF TRAFFIC NOISE	.5
D. 1	REGULATORY FRAMEWORK	10
E. 3	STUDY METHODS AND PROCEDURES	13
F.	EXISTING NOISE ENVIRONMENT	17
G.	NOISE IMPACTS AND CONSIDERED ABATEMENT	20
H. 1	FEASIBILITY AND REASONABLE ALLOWANCE CALCULATION	27
APPENDI	CES	
Appendix A:	Noise Monitoring Results And Traffic Data	
Appendix B:	Traffic Noise Model (TNM) 2.5 Printouts For Calibration Runs	
Appendix C:	Traffic Noise Model (TNM) 2.5 Printouts For Existing Conditions	
Appendix D:	Traffic Noise Model (TNM) 2.5 Printouts For Future (2035) Conditions	
1 1	Traffic Noise Model (TNM) 2.5 Printouts For Future (2035) Conditions With Sound	
F F	Barriers	
Annendix F	Worksheets for Feasibility and Reasonableness Allowance Calculation	
ippendix i.	" orkshoots for reasionity and reasonationess rinowance calculation	

(Individual Appendices included on CD inside the back cover of this report.)

FIGURES

Figure 1:	Regional Location and Study Area	6
Figure 2:	Monitoring and Modeled Receptor Locations	14
TADIEC		
TABLES		
Table 1:	Typical A-Weighted Noise Levels	8
Table 2:	Activity Categories and Noise Abatement Criteria (NAC)	
Table 3:	Traffic Volumes and Vehicle Distribution	17
Table 4:	Short-Term (15-minute) Ambient Noise Monitoring Results	18
Table 5:	Location and Meteorological Conditions of Noise Measurements	18
Table 6:	Model Calibration	18
Table 7:	24-Hour Ambient Noise Monitoring Results	19
Table 8:	Existing Traffic Noise Levels	
Table 9:	Existing and Projected Future (2035) Traffic Noise Levels	23
Table 10:	Sound Barrier Modeling Results, dBA L _{eq} (h)	25
Table 11:	Summary of Reasonable Allowance Calculation for Feasible Sound Barriers	

I. EXECUTIVE SUMMARY

The Kern Council of Governments (Kern COG) has identified ten locations throughout Kern County, based on citizen requests over the last 10 years, that are potentially exposed to excessive traffic noise levels from vehicles operating on State facilities. The purpose of this retrofit noise barrier study is to assist Kern COG in identifying impacted noise-sensitive receptors at these locations and evaluate the need for and benefit of retrofit noise barriers along portions of State Route 99 (SR 99) and State Route 58 (SR 58) in the City of Bakersfield, and along a portion of State Route 14 (SR 14) in the City of Rosamond.

The Kern COG has adopted California Department of Transportation's (Caltrans) qualification criteria for retrofit noise abatement projects. Impacted locations are those that are identified as being exposed to traffic noise levels that exceed 67 dBA $L_{\rm eq}(h)$. Any proposed abatement must be designed to reduce traffic noise levels by 5 dBA or more at impacted receptor locations and should be reasonable from a cost perspective. Kern COG has adopted Caltrans reasonable cost allowance calculation procedure for determining abatement to be reasonable.

This report analyzes the traffic noise impacts on sensitive receptors east of SR 14 between Hillcrest Avenue and Rosamond Boulevard, and along both sides of SR 14 south of Rosamond Boulevard to just north of Matthew Avenue. Currently, there are no existing sound barriers located along the State right-of-way in these locations. The sensitive receptors in the study area include both single and multi-family residential land uses.

Short- and long-term ambient noise measurements were taken in this study area to determine the existing ambient noise environment as well as to calibrate the traffic noise model TNM 2.5. Fifty-four receptor locations were modeled to represent outdoor active use areas of noise sensitive land uses in the study area. In order to identify impacted receptor locations, the resulting traffic noise levels at each modeled receptor location under existing conditions were compared to Caltrans' exterior Noise Abatement Criteria (NAC) of 67 dBA $L_{eq}(h)$. Traffic noise levels under anticipated future (year 2035) traffic conditions were also modeled in order to calculate the noise reduction that each receptor location would experience with implementation of noise abatement in the form of a sound barrier.

Of the 54 modeled receptor locations, 13 receptors would exceed the 67 dBA $L_{\rm eq}(h)$ NAC under existing or future year conditions. To reduce this impact, this study analyzed feasible noise abatement in the form of sound barriers. Table ES-1 shows a summary of the reasonableness determination for the feasible sound barriers. The locations of the proposed sound barriers are shown in Figure ES 1-1 and ES 1-2. The results show that the modeled sound barriers **SB1**, **SB3**, and **SB4** would be feasible and meet the preliminary reasonable cost-effectiveness criteria. Therefore, it is recommended that the retrofit sound barrier analysis for these identified impacted receptor locations proceed to the next step of preparation of a Noise Barrier Scope Summary Report (NBSSR). Once the NBSSR is prepared, Kern COG can prioritize the list of sound barriers and proceed to the design and construction phases based on the availability of funds.

Table ES-1: Summary of Reasonableness Determination for Feasible Sound Barriers

Tubic L	5-1. Summary of Reason	manici	icss Deterr		or reasone		111015
				Reasonable		Estimated	
Sound			Number of	Allowance	Total	Sound	
Barrier	Protected Modeled	Height	Benefited	per	Reasonable	Barrier	Preliminarily
Number	Receptor Locations a	(ft)	Residences	Residence	Allowance	Cost ^b	Reasonable?
	R1-R5	6	15	\$37,000	\$555,000	\$516,480	Yes
	R1-R5	8	15	\$37,000	\$555,000	\$688,640	No
SB1	R1-R5, R8, R9, R13, R14	10	25	\$39,000	\$975,000	\$860,800	Yes
	R1-R11, R13-R15, R20	12	37	\$39,000	\$1,443,000	\$1,032,960	Yes
	R1-R11, R13-R15, R20	14	37	\$41,000	\$1,517,000	\$1,205,120	Yes
	R28	6	1	\$33,000	\$33,000	\$286,080	No
	R27, R28	8	2	\$35,000	\$70,000	\$381,440	No
SB2	R27, R28	10	2	\$35,000	\$70,000	\$476,800	No
SBZ	R26-R28, R31	12	6	\$35,000	\$210,000	\$572,160	No
	R23, R25-R29, R31, R32	14	14	\$35,000	\$490,000	\$667,520	No
	R23, R25-R29, R31-R33	16	17	\$35,000	\$595,000	\$762,880	No
	R42	6	4	\$35,000	\$140,000	\$144,480	No
	R42	8	4	\$37,000	\$148,000	\$192,640	No
SB3	R42	10	4	\$37,000	\$148,000	\$240,800	No
303	R42, R43	12	8	\$37,000	\$296,000	\$288,960	Yes
	R42, R43	14	8	\$37,000	\$296,000	\$337,120	No
	R42, R43	16	8	\$37,000	\$296,000	\$385,280	No
	R44, R47, R52	6	8	\$37,000	\$296,000	\$276,000	Yes
İ	R44, R47, R52	8	8	\$37,000	\$296,000	\$368,000	No
SB4	R44, R47, R52	10	8	\$37,000	\$296,000	\$460,000	No
304	R44, R47, R49, R50, R52, R53	12	19	\$37,000	\$703,000	\$552,000	Yes
	R44, R47, R49, R50, R52, R53	14	19	\$37,000	\$703,000	\$644,000	Yes
	R44, R47, R49, R50, R52, R53	16	19	\$37,000	\$703,000	\$736,000	No

ft = feet

^a Modeled receptor locations that would experience a minimum 5 dBA reduction in traffic noise levels with the indicated sound barrier.

^b Cost calculations were based on a construction cost estimate of \$40 per square foot for each sound barrier. dBA = A-weighted decibel

FIGURE ES 1-1

NOISE MONITORING LOCATIONS

MODELED RECEPTOR LOCATIONS

24-HOUR MONITOR LOCATION

STUDY AREA

EXISTING SOUND BARRIERS

PROPOSED SOUND BARRIERS

State Route 14 Retrofit Noise Barrier Study Monitoring, Modeled Receptors, and Sound Barrier Locations

FIGURE ES 1-2

NOISE MONITORING LOCATIONS

MODELED RECEPTOR LOCATIONS

24-HOUR MONITOR LOCATION

STUDY AREA

EXISTING SOUND BARRIERS

PROPOSED SOUND BARRIERS

State Route 14 Retrofit Noise Barrier Study Monitoring, Modeled Receptors, and Sound Barrier Locations

II. RETROFIT NOISE BARRIER STUDY

A. INTRODUCTION

Kern Council of Governments (Kern COG) has identified ten locations throughout Kern County, based on citizen requests over the last 10 years, that are potentially exposed to excessive traffic noise levels from vehicles operating on State facilities. The purpose of this retrofit noise barrier study is to assist Kern COG in identifying impacted noise-sensitive receptor locations and evaluating the need for and benefit of retrofit noise barriers along portions of State Route 99 (SR 99) and SR 58 in the City of Bakersfield, and along a portion of SR 14 in the City of Rosamond.

This report provides the data with which the Kern COG can make an informed decision in prioritizing retrofit noise barrier projects and determining which projects should proceed to the next level of analysis: the preparation of an NBSSR for Caltrans approval. This retrofit noise barrier study has been conducted based on Caltrans' qualification criteria for retrofit noise abatement projects.

B. STUDY DESCRIPTION

This report analyzes the traffic noise impacts on sensitive receptors east of SR 14 between Hillcrest Avenue and Rosamond Boulevard, and along both sides of SR 14 south of Rosamond Boulevard to just north of Matthew Avenue. Currently, there are no existing sound barriers located along the State right-of-way in these locations. The sensitive receptors in the study area include both single- and multi-family residential land uses. The regional location and study area are shown in Figure 1.

This analysis includes both long-term and short-term noise measurements at representative sensitive receptors in the study area. Roadway traffic noise modeling was performed using the Federal Highway Administration (FHWA) approved Traffic Noise Model (TNM) 2.5. Existing traffic noise levels were then compared to the FWHA Noise Abatement Criteria (NAC) for the identified land uses. Where existing or predicted future traffic noise levels exceed the NAC, noise abatement in the form of a retrofit sound barrier was then analyzed.

C. FUNDAMENTALS OF TRAFFIC NOISE

This section provides a brief discussion of fundamental traffic noise concepts. For a detailed discussion, refer to the Caltrans *Technical Noise Supplement*, which is available on the Caltrans web site at www.dot.ca.gov/hq/env/noise.

Sound, Noise, and Acoustics

Sound can be described as the mechanical energy of a vibrating object transmitted by pressure waves through a liquid or gaseous medium (e.g., air) to a hearing organ, such as a human ear. Noise is

¹ Caltrans, 2009. Technical Noise Supplement. November.

FIGURE 1

State Route 14 Retrofit Noise Barrier Study Regional Location and Study Area defined as loud, unexpected, or annoying sound. In the science of acoustics, the fundamental model consists of a sound (or noise) source, a receptor, and the propagation path between the two. The loudness of the noise source and obstructions or atmospheric factors affecting the propagation path to the receptor determine the sound level and characteristics of the noise perceived by the receptor. The field of acoustics deals primarily with the propagation and control of sound.

Frequency and Hertz

Continuous sound can be described by frequency (pitch) and amplitude (loudness). A low-frequency sound is perceived as low in pitch. Frequency is expressed in terms of cycles per second, or Hertz (Hz) (e.g., a frequency of 250 cycles per second is referred to as 250 Hz). High frequencies are sometimes more conveniently expressed in kilohertz (kHz), or thousands of Hertz. The audible frequency range for humans is generally between 20 Hz and 20,000 Hz.

Sound Pressure Levels and Decibels

The amplitude of pressure waves generated by a sound source determines the loudness of that source. Sound pressure amplitude is measured in micro-Pascals (mPa). One mPa is approximately one hundred billionth (0.0000000001) of normal atmospheric pressure. Sound pressure amplitudes for different kinds of noise environments can range from less than 100 to 100,000,000 mPa. Because of this huge range of values, sound is rarely expressed in terms of mPa. Instead, a logarithmic scale is used to describe sound pressure level (SPL) in terms of decibels (dB). The threshold of hearing for young people is about 0 dB, which corresponds to 20 mPa.

Addition of Decibels

Because decibels are logarithmic units, SPL cannot be added or subtracted through ordinary arithmetic. Under the decibel scale, a doubling of sound energy corresponds to a 3 dB increase. In other words, when two identical sources are each producing sound of the same loudness, the resulting sound level at a given distance would be 3 dB higher than one source under the same conditions. For example, if one automobile produces an SPL of 70 dB when it passes an observer, two cars passing simultaneously would not produce 140 dB—rather, they would combine to produce 73 dB. Under the decibel scale, three sources of equal loudness together produce a sound level 5 dB louder than one source.

A-Weighted Decibels

The decibel scale alone does not adequately characterize how humans perceive noise. The dominant frequencies of a sound have a substantial effect on the human response to that sound. Although the intensity (energy per unit area) of the sound is a purely physical quantity, the loudness or human response is determined by the characteristics of the human ear.

Human hearing is limited in the range of audible frequencies as well as in the way it perceives the SPL in that range. In general, people are most sensitive to the frequency range of 1,000–8,000 Hz, and perceive sounds within that range better than sounds of the same amplitude in higher or lower frequencies. To approximate the response of the human ear, sound levels of individual frequency bands are weighted, depending on the human sensitivity to those frequencies. Then, an "A-weighted" sound level (expressed in units of dBA) can be computed based on this information.

The A-weighting network approximates the frequency response of the average young ear when listening to most ordinary sounds. When people make judgments of the relative loudness or annoyance of a sound, their judgments correlate well with the A-scale sound levels of those sounds. Other weighting networks have been devised to address high noise levels or other special problems (e.g., B-, C-, and D-scales), but these scales are rarely used in conjunction with highway-traffic noise. Noise levels for traffic noise reports are typically reported in terms of A-weighted decibels or dBA. Table 1 describes typical A-weighted noise levels for various noise sources.

Table 1: Typical A-Weighted Noise Levels

Common Outdoor Activities	Noise Level (dBA)	Common Indoor Activities
	— 110 —	Rock band
Jet fly-over at 1000 feet		
	— 100 —	
Gas lawn mower at 3 feet		
	—90 —	
Diesel truck at 50 feet at 50 mph		Food blender at 3 feet
	—80 —	Garbage disposal at 3 feet
Noisy urban area, daytime		
Gas lawn mower, 100 feet	—70 —	Vacuum cleaner at 10 feet
Commercial area		Normal speech at 3 feet
Heavy traffic at 300 feet	—60 —	
		Large business office
Quiet urban daytime	—50 —	Dishwasher next room
Quiet urban nighttime	— 40 —	Theater, large conference room (background)
Quiet suburban nighttime		
	—30 —	Library
Quiet rural nighttime		Bedroom at night, concert
_	— 20 —	
		Broadcast/recording studio
	—10—	
Lowest threshold of human hearing	—0—	Lowest threshold of human hearing

Source: Caltrans, November 2009. dBA = A-Weighted decibels mph = miles per hour

Human Response to Changes in Noise Levels

As discussed above, doubling sound energy results in a 3 dB increase in sound. However, given a sound level change measured with precise instrumentation, the subjective human perception of a doubling of loudness will usually be different than what is measured.

Under controlled conditions in an acoustical laboratory, the trained, healthy human ear is able to discern 1 dB changes in sound levels, when exposed to steady, single-frequency ("pure-tone") signals in the midfrequency (1,000 Hz–8,000 Hz) range. In typical noisy environments, changes in noise of 1 to 2 dB are generally not perceptible. However, it is widely accepted that people are able to begin to detect sound level increases of 3 dB in typical noisy environments. Further, a 5 dB increase is generally perceived as a distinctly noticeable increase, and a 10 dB increase is generally perceived as a doubling of loudness. Therefore, a doubling of sound energy (e.g., doubling the volume of traffic on a

highway) that would result in a 3 dB increase in sound, would generally be perceived as barely detectable.

Noise Descriptors

Noise in the daily environment fluctuates over time. Some of the fluctuations are minor; some are substantial. Some noise levels occur in regular patterns; others are random. Some noise levels fluctuate rapidly, others slowly. Some noise levels vary widely; others are relatively constant. Various noise descriptors have been developed to describe time-varying noise levels. The following is a list of the noise descriptors most commonly used in traffic noise analysis:

- Equivalent Sound Level (L_{eq}): L_{eq} represents an average of the sound energy occurring over a specified period. L_{eq} is, in effect, the steady-state sound level that, in a stated period, would contain the same acoustical energy as the time-varying sound that actually occurs during the same period. The 1-hour A-weighted equivalent sound level, $L_{eq}(h)$, is the energy average of the A-weighted sound levels occurring during a 1-hour period and is the basis for the Noise Abatement Criteria (NAC) used by Caltrans and FHWA.
- Percentile-Exceeded Sound Level (L_x): L_x represents the sound level exceeded for a given percentage of a specified period. For example, L_{10} is the sound level exceeded 10 percent of the time, and L_{90} is the sound level exceeded 90 percent of the time.
- Maximum Sound Level (L_{max}): L_{max} is the highest instantaneous sound level measured during a specified period.
- Day-Night Level (L_{dn}): L_{dn} is the energy average of A-weighted sound levels occurring over a 24-hour period, with a 10 dB penalty applied to A-weighted sound levels occurring during nighttime hours between 10:00 p.m. and 7:00 a.m.
- Community Noise Equivalent Level (CNEL): The 24-hour A-weighted average sound level from midnight to midnight, obtained after the addition of 5 dBA to sound levels occurring in the evening from 7:00 p.m. to 10:00 p.m. and after the addition of 10 dBA to sound levels occurring in the night between 10:00 p.m. and 7:00 a.m.

Sound Propagation

When sound propagates over a distance, it changes in both level and frequency content. The manner in which noise reduces with distance depends on the following factors.

Geometric Spreading. Sound from a localized source (i.e., a point source) propagates uniformly outward in a spherical pattern. The sound level attenuates (or decreases) at a rate of 6 dB for each doubling of distance from a point source. Highways consist of several localized noise sources on a defined path, and hence can be treated as a line source, which approximates the effect of several point sources. Noise from a line source propagates outward in a cylindrical pattern, often referred to as cylindrical spreading. Sound levels attenuate at a rate of 3 dB for each doubling of distance from a line source.

Ground Absorption. The propagation path of noise from a highway to a receptor is usually very close to the ground. Noise attenuation from ground absorption and reflective-wave canceling adds to the attenuation associated with geometric spreading. Traditionally, the excess attenuation has also been expressed in terms of attenuation per doubling of distance. This approximation is usually

sufficiently accurate for distances of less than 200 feet. For acoustically hard sites (i.e., sites with a reflective surface between the source and the receptor, such as a parking lot or body of water), no excess ground attenuation is assumed. For acoustically absorptive or soft sites (i.e., those sites with an absorptive ground surface between the source and the receptor, such as soft dirt, grass, or scattered bushes and trees), an excess ground-attenuation value of 1.5 dB per doubling of distance is normally assumed. When added to the cylindrical spreading, the excess ground attenuation results in an overall drop-off rate of 4.5 dB per doubling of distance.

Atmospheric Effects. Receptors located downwind from a source can be exposed to increased noise levels relative to calm conditions, whereas locations upwind can have lowered noise levels. Sound levels can be increased at large distances (e.g., more than 500 feet) from the highway due to atmospheric temperature inversion (i.e., increasing temperature with elevation). Other factors such as air temperature, humidity, and turbulence can also have significant effects.

Shielding by Natural and Human-Made Features. A large object or barrier in the path between a noise source and a receptor can substantially attenuate noise levels at the receptor. The amount of attenuation provided by shielding depends on the size of the object and the frequency content of the noise source. Natural terrain features (e.g., hills and dense woods) and human-made features (e.g., buildings and walls) can substantially reduce noise levels. Walls are often constructed between a source and a receptor specifically to reduce noise. A barrier that breaks the line of sight between a source and a receptor will typically result in at least 5 dB of noise reduction. Taller barriers provide increased noise reduction. Vegetation between the highway and receptor is rarely effective in reducing noise because it does not create a solid barrier.

D. REGULATORY FRAMEWORK

This section provides a brief discussion of the applicable federal, State, and local regulations, standards, and policies.

National Environmental Policy Act

The National Environmental Policy Act (NEPA) is a federal law that establishes environmental policy for the nation, provides an interdisciplinary framework for federal agencies to prevent environmental damage, and contains action-forcing procedures to ensure that federal agency decision makers take environmental factors into account. Under the NEPA, impacts and measures to mitigate adverse impacts must be identified, including the identification of impacts for which no mitigation or only partial mitigation is available. The FHWA regulations discussed below constitute the federal noise standard.

FHWA Regulations

On July 13, 2010, FHWA issued the Title 23, Part 772 of the Code of Federal Regulations (23 CFR 772)² Final Rule. This final rule amended the Federal regulations on the Procedures for Abatement of Highway traffic Noise and Construction Noise. The final rule clarifies and adds definitions, the applicability of this regulation, certain analysis requirements, and the use of Federal funds for noise

-

² Federal Highway Administration, Title 23, Code of Federal Regulations, Part 772, Final Rule.

abatement measures. The effective date of the final rule is July 13, 2011. It is anticipated that preparation of a NBSSR for this study area will not occur until after that date. Therefore, in order to provide the most helpful information possible toward the preparation of that report, the analysis provided in this report is based on the requirements of this final rule.

The final rule of 23 CFR Part 772 outlines the procedures for conducting highway project noise studies and implementing noise abatement measures to help protect the public health and welfare, supplies the Noise Abatement Criteria (NAC) for designated activity categories, and establishes requirements for information to be given to local officials for use in planning and designing highways. Under this regulation, noise abatement can be considered for a Type II project if traffic noise impacts have been identified. The FHWA defines retrofit noise abatement projects, or Type II projects, as projects receiving Federal or Federal-aid highway projects for noise abatement on an existing highway. For a Type II project to be eligible for Federal-aid funding, the retrofit noise barrier analysis must be performed in accordance with the State's adopted Type II program requirements.

For Type II projects, a traffic noise impact is considered to occur when the existing traffic noise levels at the exterior of dwelling unit areas exceed the 67 dBA $L_{eq}(h)$ NAC specified in the regulation. Table 2 summarizes the FHWA NAC for each activity category area.

California Environmental Quality Act

The California Environmental Quality Act (CEQA) is the foundation of environmental law and policy in California. The main objectives of CEQA are to disclose to decision makers and the public the significant environmental effects of proposed activities and to identify ways to avoid or reduce those effects by requiring implementation of feasible alternatives or mitigation measures. Under CEQA, a substantial noise increase may result in a significant adverse environmental effect; if so, the noise increase must be mitigated or identified as a noise impact for which it is likely that only partial (or no) mitigation measures are available. Specific economic, social, environmental, legal, and technological conditions may make noise mitigation measures infeasible.

Caltrans Traffic Noise Analysis Protocol for Retrofit Noise Abatement Projects

The *Traffic Noise Analysis Protocol* (Protocol)³ addresses Caltrans' policies on retrofit noise abatement on existing transportation facilities for projects proposed within the State right-of-way or projects proposed by any agency using Type II federal aid funds under 23 CFR 772. Qualification criteria for retrofit noise abatement projects include: (1) residential area must be developed before construction of the highway or before any expansion or alteration of the highway that would result in increased traffic noise at the residential areas; (2) existing worst-hour noise level at the exterior of dwelling unit areas must exceed 67 dBA $L_{eq}(h)$; and (3) any other FHWA-approved criteria established and implemented by sponsoring Regional Transportation Planning Agencies (RTPAs) responsible for retrofit noise abatement program must be met.

Kern Council of Governments

Kern COG is the designated Federal Metropolitan Planning Organization and the State Regional Transportation Planning Agency for Kern County. Under current state law, Regional Transportation Planning Agencies, such as the Kern COG, are the responsible agencies for sponsoring retrofit noise

.

³ Caltrans, 2006. Traffic Noise Analysis Protocol. August.

abatement projects. However, abatement proposed for construction within the State right-of-way must be approved by Caltrans and therefore must meet certain minimum requirements.

Table 2: Activity Categories and Noise Abatement Criteria (NAC)

Activity Category	Activity Criteria L _{eq} (h) ^a	Evaluation Location	Activity Description
A	57	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose
В ^b	67 52	Exterior Interior	Residential
С ь	67	Exterior	Active sport areas, amphitheatres, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings
D	52	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios
E ^b	72	Exterior	Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F
F			Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing
G			Undeveloped lands that are not permitted

The Leq(h) Activity Criteria values are for impact determination only, and are not design standards for noise abatement measures.
 Includes undeveloped lands permitted for this activity category.

Source: FHWA 23 CFR 772

The Kern COG has adopted the Caltrans' qualification criteria for retrofit noise abatement projects. The Kern COG provides a process to evaluate noise complaints on an ongoing basis and the needed funding to begin to address Kern County's sound barrier needs. Impacted locations are those that are identified as being exposed to traffic noise levels that exceed 67 dBA $L_{\rm eq}(h)$. Any proposed abatement must be designed to reduce traffic noise levels by 5 dBA or more at impacted receptor locations and should be reasonable from a cost perspective. Kern COG has adopted Caltrans reasonable cost allowance calculation procedure for determining abatement to be reasonable. The opinions of affected property owners are also considered in reaching a final decision on the noise abatement measures to be provided. Noise abatement within the State right-of-way will not be provided if more than 50 percent of the affected property owners do not want it. Noise abatement will not be provided on private property unless 100 percent of the owners of the property on which the abatement will be located want it.

Kern County General Plan Noise Policies

The Noise Element in the Kern County General Plan⁴ identifies goals and policies indicating their intentions regarding noise and noise sources. The policy objective is to ensure that residents of Kern County are protected from excessive noise and that moderate noise levels are maintained. By utilizing

_

⁴ Kern County, 2007. Kern County General Plan. March 13.

good land use planning principles and by prohibiting new noise-sensitive land uses in noise-impacted areas unless effective mitigation measures are incorporated, incompatible land uses near known noise producing sources can be prevented. The County's policy requires that mitigation be designed to reduce noise levels to 65 dB L_{dn} or less in outdoor activity areas.

E. STUDY METHODS AND PROCEDURES

This section outlines the methodology for conducting the short- and long-term ambient noise measurements and the methodology and data input for the traffic noise modeling using TNM 2.5.

Site Selection

Noise sensitive land uses in the study area were identified through land use maps, aerial photography, and site inspection. Noise-sensitive land uses in the study area include single and multifamily residences. As retrofit noise barrier projects are limited to residential areas, no receptors were modeled to represent hotels, retail, and commercial land uses. The generalized land use data and location of particular sensitive receptors were the basis for the selection of the noise monitoring and analysis sites. A total of 54 receptor locations were modeled to represent the noise-sensitive land uses in the study area. The short- and long-term noise monitoring as well as the modeled receptor locations are shown in Figure 2.

Noise Level Measurement Program

Existing noise levels in the study area were sampled during off-peak traffic hours when traffic was flowing freely (8:50 a.m. to10:00 a.m.). All short-term measurements were made using a Larson Davis Model 820 Type 2 sound level meter (Serial No. 0519).

Concurrent counts of bi-directional traffic volumes on each roadway segment were taken during each short-term measurement. The traffic counts were noted for the following vehicle types: automobiles, medium trucks, and heavy trucks. An automobile is defined as a vehicle with two axles and four tires that are designed primarily to carry passengers; small vans and light trucks are included in this category. Medium-duty trucks include all cargo vehicles with two-axles and six wheels, not including dually pick-up trucks. Heavy-duty trucks include all vehicles with three or more axles. The posted speeds as well as the observed average travel speeds were documented.

The following measurement procedures were utilized:

- Calibrate sound level meter.
- Set up sound level meter at a height of 5 feet.
- Commence noise monitoring.
- Collect site-specific data such as date, time, direction of traffic, and distance from sound level meter to the right-of-way.
- Count passing vehicles by classification for a period of 15 minutes.
- Stop measurement after 15 minutes.
- Calibrate sound level meter.
- Proceed to next monitoring site and repeat.

FIGURE 2-1

NOISE MONITORING LOCATIONS

MODELED RECEPTOR LOCATIONS

24-HOUR MONITOR LOCATION

STUDY AREA

EXISTING SOUND BARRIERS

PROPOSED SOUND BARRIERS

State Route 14 Retrofit Noise Barrier Study Monitoring, Modeled Receptors, and Sound Barrier Locations

FIGURE 2-2

NOISE MONITORING LOCATIONS

MODELED RECEPTOR LOCATIONS

24-HOUR MONITOR LOCATION

STUDY AREA

EXISTING SOUND BARRIERS

PROPOSED SOUND BARRIERS

State Route 14 Retrofit Noise Barrier Study Monitoring, Modeled Receptors, and Sound Barrier Locations The traffic counts were subsequently expanded to hourly volumes (multiplied to normalize the results to hourly values) and entered into the TNM 2.5 model runs for each monitoring site. The short-term ambient noise monitoring results were used to calibrate the model outputs as described in the following discussion.

Noise Modeling

The FHWA-approved traffic noise prediction model TNM 2.5 was used for the traffic noise computations. Key inputs to the traffic noise model include the locations and elevations of existing roadways, shielding features (e.g., topography and buildings), noise barriers, and receptors. Three-dimensional representations of the project impact study areas were generated and used to mark all existing roadway, terrain features, existing buildings, and noise sensitive receptor locations. ArcGIS software was used to provide an interface between this digital terrain data and TNM 2.5. ArcGIS was used to capture the coordinates of the roadway segment points, as well as sensitive receptor coordinates.

To validate the accuracy of the model, calibration runs were performed to compare the measured traffic noise levels to modeled noise levels for each field measurement location as needed. The traffic counts by vehicle classification that were documented during each of the short-term noise measurements were expanded to hourly volumes (multiplied to normalize the results to hourly values) and entered into TNM 2.5. The results of these model runs were compared to the measured ambient noise levels to ensure the accuracy of the TNM 2.5 model outputs. Correction factors, known as K-factors, were calculated as measured sound levels minus the modeled sound levels. As necessary, K-factors calculated through the calibration modeling were applied to each of the modeled receptor locations so that the measured and modeled noise levels were the same.

Existing traffic noise levels were calculated at representative receptor locations along each project roadway segment using the FHWA traffic noise prediction model TNM 2.5. A sufficient number of receptor points located at first- and second-row residences were analyzed so that all existing traffic noise level impacts along modeled roadway segments were identified.

Long-term noise measurements can be used to estimate worst-hour traffic noise levels from levels measured during non-worst traffic hour times. However, because the PM peak-hour traffic volumes for existing conditions were used in modeling the existing traffic noise levels, the modeled existing traffic noise levels were not adjusted for peak-hour noise levels using the long-term monitoring results or otherwise existing traffic noise levels would be overestimated. To provide the most conservative estimate of existing traffic noise levels at all 54 modeled sensitive receptor locations, existing roadway conditions were modeled using the PM peak-hour traffic volumes assuming that traffic would remain free flowing at the posted speeds. The modeled existing PM peak hour traffic noise levels were compared to the 67 dBA $L_{eq}(h)$ NAC to determine existing traffic noise impacts. For receptor locations that experience traffic noise levels in excess of 67 dBA $L_{eq}(h)$, noise abatement measures were considered to reduce the noise impacts.

The future noise conditions at all 54 modeled sensitive receptor locations both without and with noise abatement measures were also modeled. In order to provide the most conservative estimate of future traffic noise levels, the predicted future PM peak hour traffic volumes for the year 2035 were used. The predicted PM peak hour traffic volumes for both the mainline and side roads in the study area were obtained from the results of the Kern COG regional transportation model.

The TNM 2.5 model is sensitive to the volume of trucks on the roadway because trucks contribute disproportionally to the traffic noise. Vehicle distributions from the Caltrans Truck Traffic Study (2008 Annual Average Daily Truck Traffic on the California State Highway System) were used for the mainline vehicle percentage calculations; the vehicle percentage calculation for the side roads utilized the traffic count data provided in the Kern COG Regional Transportation Plan count summaries. The PM peak hour traffic volumes were obtained from the Kern COG Regional Transportation Plan modeling results. The posted speed limit on this portion of SR 14 is 65 miles per hour (mph) for autos and 55 mph for trucks and autos with trailers. Traffic volumes and vehicle distribution on SR 14 and the modeled side roads in the study area are shown in Table 3.

Table 3: Traffic Volumes and Vehicle Distribution

Roadway	Existing / Future PM Peak Hour Volumes	Automobiles (%)	Medium Trucks	Heavy Trucks
SR 14 (Northbound)	1166 / 2068	93.2	3.6	3.2
SR 14 (Southbound)	797 / 1490	93.2	3.6	3.2
Rosamond Boulevard Segment 1 (Westbound)	1130 / 2480	93.2	3.6	3.2
Rosamond Boulevard Segment 2 (Westbound)	858 / 1361	93.2	3.6	3.2
Rosamond Boulevard Segment 1 (Eastbound)	622 / 1124	93.2	3.6	3.2
Rosamond Boulevard Segment 2 (Eastbound)	736 / 1425	93.2	3.6	3.2

Source: Caltrans 2008 Truck Traffic Volumes and Kern COG 2006 and 2035 Regional Transportation Plan model results and 2007 Regional Transportation Plan count summaries.

F. EXISTING NOISE ENVIRONMENT

This section describes the existing ambient noise conditions in the study area based on the results of the short- and long-term noise measurements, and describes the methodology for and results of calibration of the traffic noise model TNM 2.5.

The primary source for noise at sensitive receptor locations is traffic on the SR 14. Ambient short-term (15-minute) noise measurements were conducted on Thursday, July 22, 2010, to document existing noise levels at three representative sensitive receptor locations in the project area. The noise level measurements were performed using a Larson Davis Model 820 Type 1 sound level meter. Table 4 contains the results of these measurements. Table 5 describes the physical location of the noise monitoring. These noise measurements were used to calibrate the noise model for the K-factors that were used to predict the noise levels at all 54 modeled sensitive receptors in the project area. The noise monitoring locations are shown in Figure 2. The noise monitoring results and traffic counts are included in Appendix A. The model input and output data for the calibration model runs are provided in Appendix B.

Table 4: Short-Term (15-minute) Ambient Noise Monitoring Results

Monitor Number	Location Description	Start Time	dBA L _{eq}	Noise Sources
M1	3355 Haven Street	11:08 AM	64.6	Traffic on SR 14
M2	2931 Laurel Street	10:32 AM	54.6	Traffic on SR 14
M3	2196 Oak Street	9:53 AM	66.3	Traffic on SR 14

Table 5: Meteorological Conditions of Noise Measurements

Monitor Number	Temperature	Relative Humidity (%)	Maximum Wind Velocity (mph)	Average wind Velocity (mph)
M1	96	15	5.1	1.2
M2	97	12	5.3	0.9
M3	93	16	6.0	1.6

Three separate model runs were performed using the traffic numbers collected during the short-term ambient noise monitoring. The results of these model runs were compared to the measured ambient noise levels to ensure the accuracy of the TNM 2.5 model. Correction factors, known as K-factors, are calculated as measured sound levels minus the modeled sound levels. Table 6 shows the ambient noise level, the modeled noise level, and the K-factor at both of the monitored locations. The results show that the predicted sound levels at each of the modeled noise monitoring locations were found to be within 3 dBA of the measured sound levels. Therefore, based on FHWA guidelines, K-factors within 3 dBA are considered to be in reasonable agreement with the measured sound levels and no calibration of the model is required.

Table 6: Model Calibration

Monitor Number	Monitored Noise Level (dBA)	Modeled Noise Level (dBA)	K-Factor (dBA)
M1	64.6	66.6	-2.0
M2	54.6	56.3	-1.7
М3	66.3	68.9	-2.6

Long-term noise monitoring was conducted using a Larson Davis Model 720 Type 2 sound level meter (serial number 0519). The long-term noise measurement was performed at the edge of right-of-way in the open space between SR 14 and the residential land uses at the north end of Granite Street from 12:00 p.m. on Wednesday, July 21, 2010, to 12:00 p.m. on Thursday, July 22, 2010. Table 7 summarizes the results of the long-term monitoring. As shown in Table 7, traffic noise in the project area peaks during the 6:00 a.m. and the 7:00 a.m. hours. The long-term noise monitoring location is shown on Figure 2.

Table 7: 24-Hour Ambient Noise Monitoring Results

		Noise Level
Date	Time	$(dBA L_{eq}(h))$
Wednesday, July 21, 2010	12:00 PM	74 a
Wednesday, July 21, 2010	1:00 PM	74
Wednesday, July 21, 2010	2:00 PM	74
Wednesday, July 21, 2010	3:00 PM	75
Wednesday, July 21, 2010	4:00 PM	75
Wednesday, July 21, 2010	5:00 PM	75
Wednesday, July 21, 2010	6:00 PM	74
Wednesday, July 21, 2010	7:00 PM	74
Wednesday, July 21, 2010	8:00 PM	73
Wednesday, July 21, 2010	9:00 PM	72
Wednesday, July 21, 2010	10:00 PM	71
Wednesday, July 21, 2010	11:00 PM	68
Thursday, July 22, 2010	12:00 AM	67
Thursday, July 22, 2010	1:00 AM	66
Thursday, July 22, 2010	2:00 AM	65
Thursday, July 22, 2010	3:00 AM	67
Thursday, July 22, 2010	4:00 AM	71
Thursday, July 22, 2010	5:00 AM	75
Thursday, July 22, 2010	6:00 AM	76 b
Thursday, July 22, 2010	7:00 AM	76 b
Thursday, July 22, 2010	8:00 AM	74
Thursday, July 22, 2010	9:00 AM	74
Thursday, July 22, 2010	10:00 AM	73
Thursday, July 22, 2010	11:00 AM	73

 $^{^{\}rm a}$ Numbers in **bold** indicate noise levels that exceed the 67 dBA $L_{\rm eq}(h)$ NAC.

Land uses in the project area have been grouped into a series of lettered analysis areas that are identified in Figure 2. Each of these analysis areas is considered to be acoustically equivalent.

Area A: Area A is located on the east side of SR 14, north of Rosamond Boulevard. A residential subdivision is located in this area. This area is generally flat. The backyards of first row receptors face the highway. The northern portion of the adjacent segment of SR 14 rises sharply in elevation above the land uses in Area A. There is no existing sound barrier to protect these receptor locations from traffic noise on SR 14. Modeled receptors R1 to R21, representing a total of 52 residences in Area A, are shown in Figure 2.

Area B: Area B is located on the west side of SR 14, south of Rosamond Boulevard. A residential subdivision is located in this area. This area is generally flat. The front yards of the majority of the first row receptors face the highway, the sides of the backyards of two residences face the highway. There is no existing sound barrier to protect these receptor locations from traffic noise on SR 14. Modeled receptors R22 to R36, representing a total of 33 residences in Area B, are shown in Figure 2.

^b Peak noise hour(s).

Area C: Area C is located on the east side of SR 14, south of Rosamond Boulevard. Single and multi-family residential uses are located in this area. This area is generally flat. The buildings of the first row, multi-family units provide some shielding for the corresponding outdoor active use areas. There is no existing sound barrier to protect these receptor locations from traffic noise on SR 14. Modeled receptors R37 to R43, representing a total of 25 residences in Area C, are shown in Figure 2.

Area D: Area D is located on the east side of SR 14, south of Rosamond Boulevard. A residential subdivision is located in this area. This area is generally flat. The sides of the backyards of first row receptors face the highway. While there is an existing 8 foot sound wall along the property line of the residential land uses south of Area D, there, is no existing sound barrier to protect these receptor locations from traffic noise on SR 14. Modeled receptors R44 to R54, representing a total of 34 residences in Area D, are shown in Figure 2.

G. NOISE IMPACTS AND CONSIDERED ABATEMENT

This section presents the results of the traffic noise modeling, identifies impacted modeled sensitive receptor locations, and describes the results of the modeled noise abatement in the form of sound barriers.

Traffic Noise Impact Assessment

The existing traffic noise levels at all 54 modeled sensitive receptor locations were calculated using the PM peak-hour traffic volumes assuming that traffic would remain free flowing at the posted speeds. The existing traffic noise levels at each modeled receptor location were compared to the exterior NAC of 67 dBA $L_{eq}(h)$ for residential Activity Category B uses. The existing traffic noise level modeling results for each modeled sensitive receptor locations are shown in Table 8. Traffic noise levels exceeding of the NAC are shown in bold. The model input and output data for the existing conditions are included in Appendix C.

Traffic noise levels under anticipated future (year 2035) traffic conditions were also modeled in order to calculate the insertion loss (noise reduction) that each receptor location would experience with implementation of noise abatement in the form of a sound barrier. A conservative calculation of the future traffic noise levels at the modeled sensitive receptor locations within the study area were determined assuming existing terrain and building features (i.e., without modeled sound barriers) using the future year 2035 PM peak hour traffic volumes as described in Section E.

The traffic noise model results for both existing and future (year 2035) conditions without noise abatement measures are shown in Table 9. The modeled future traffic noise levels were also compared to the NAC to determine whether traffic noise impacts would still occur under predicted future year traffic conditions. The model input and output data for the future conditions without modeled sound barriers are included in Appendix D.

Table 8: Existing Traffic Noise Levels

64 1		raffic Noise Le		Number of	Noise	Modeled Existing Noise Level
Study	Receptor		Type of	Units	Abatement	
Area	Number	Location	Development	Represented	Category	$(dBA L_{eq}(h))$
	R1	Haven Street	Residential	3	B (67)	66
	R2	Haven Street	Residential	3	B (67)	68 ^a
	R3	Haven Street	Residential	3	B (67)	67
	R4	Haven Street	Residential	3	B (67)	68
	R5	Haven Street	Residential	3	B (67)	68
	R6	Alexander Avenue Rosewood Avenue	Residential	2	B (67)	64
	R7		Residential	3	B (67)	64
	R8 R9	Shelly Avenue Shelly Avenue	Residential Residential	3	B (67) B (67)	64 65
	R10	Shelly Avenue	Residential	3	B (67)	65
Area A	R11	Shelly Avenue	Residential	2	B (67)	64
1110411	R12	Shelly Avenue	Residential	1	B (67)	63
	R13	Rosewood Avenue	Residential	2	B (67)	63
	R14	Alexander Avenue	Residential	2	B (67)	62
	R15	Rosewood Avenue	Residential	2	B (67)	59
	R16	Haven Street	Residential	3	B (67)	56
	R17	Haven Street	Residential	3	B (67)	55
	R18	Haven Street	Residential	3	B (67)	54
	R19	Haven Street	Residential	3	B (67)	53
	R20	Haven Street	Residential	2	B (67)	56
	R21	Haven Street	Residential	2	B (67)	56
	R22	Laurel Street	Residential	2	B (67)	60
	R23	Laurel Street	Residential	2	B (67)	62
	R24	Laurel Street	Residential	3	B (67)	58
	R25	Laurel Street	Residential	3	B (67)	61
	R26	Laurel Street	Residential	2	B (67)	62
	R27	Laurel Street	Residential	1	B (67)	67
A D	R28 R29	Poplar Street	Residential	1 1	B (67)	68 64
Area B	R29	Poplar Street Poplar Street	Residential Residential	2	B (67) B (67)	59
	R31	Poplar Street	Residential	2	B(67)	60
	R32	Poplar Street	Residential	2	B(67)	57
	R33	Acacia Street	Residential	3	B(67)	58
	R34	Acacia Street	Residential	3	B(67)	57
	R35	Acacia Street	Residential	3	B(67)	57
	R36	Acacia Street	Residential	3	B(67)	58
	R37	C Street	Residential	3	B(67)	60
	R38	C Street	Residential	3	B(67)	57
	R39	C Street	Residential	3	B(67)	59
Area C	R40	Poplar Street	Residential	4	B(67)	60
	R41	Poplar Street	Residential	4	B(67)	59
	R42	Poplar Street	Residential	4	B(67)	65
	R43	Poplar Street	Residential	4	B(67)	61
	R44	Oak Street	Residential	2	B(67)	68
	R45	Oak Street	Residential	3	B(67)	60
	R46	Oak Street	Residential	2	B(67)	57
	R47	Elm Street	Residential	4	B(67)	68
Ames D	R48	Elm Street	Residential	4	B(67)	56
Area D	R49	Elm Street	Residential	4 4	B(67)	60 50
	R50 R51	Elm Street Orange Street	Residential Residential	4 4	B(67)	59 57
	R51 R52	Orange Street Orange Street	Residential	2	B(67) B(67)	57 67
	R52 R53	Orange Street Orange Street	Residential	3	B(67)	60
	NJJ	Orange Succi	residential	J	$\mathbf{D}(\mathbf{U}/)$	00

^a Numbers in **bold** indicate noise levels that exceed the 67 dBA Leq(h) NAC.

Of the 54 modeled receptor locations, 6 receptor locations would exceed the 67 dBA $L_{\rm eq}(h)$ NAC under existing conditions while 13 would exceed under future conditions. Modeled receptors that would experience a noise level that exceeds the 67 dBA $L_{\rm eq}(h)$ NAC are shown in bold in Table 9. Sound barriers were analyzed for these identified impacted receptor locations.

The following is a discussion of impacted receptor locations for each evaluation area.

- Area A Impacted Receptor Locations R1 to R5, R9, and R10. These receptor locations represent existing single family residences located on Haven Street and Shelly Avenue along the east side of SR 14, north of Rosamond Boulevard. Modeled traffic noise levels at these impacted receptors range from 68 dBA to 71 dBA L_{eq}(h). All of these impacted receptors are first row receptors, the residences with outdoor active use areas nearest the highway. The northern portion of the adjacent segment of SR 14 rises sharply in elevation above the land uses in Area A. There is no existing sound barrier to protect these impacted receptor locations from traffic noise on SR 14. Because the existing and predicted future noise levels exceed 67 dBA L_{eq}(h), traffic noise impacts are predicted at residences in this area, and noise abatement must be considered. Impacted receptors R1 to R5, R9, and R10 represent a total of 21 residences in Area A.
- Area B Impacted Receptor Locations R27 and R28. These receptor locations represent existing single family residences located on Laurel Street and Poplar Street along the west side of SR 14, south of Rosamond Boulevard. Modeled traffic noise levels at these impacted receptors range from 68 dBA to 71 dBA $L_{eq}(h)$. These impacted receptors are first row receptors, the residences with outdoor active use areas nearest the highway. There is no existing sound barrier to protect these impacted receptor locations from traffic noise on SR 14. Because the existing and predicted future noise levels exceed 67 dBA $L_{eq}(h)$, traffic noise impacts are predicted at residences in this area, and noise abatement must be considered. Impacted receptors R27 and R28 represent a total of 2 residences in Area B.
- Area C Impacted Receptor Location R42. This receptor location represents existing multifamily residences located on Poplar Street along the east side of SR 14, south of Rosamond Boulevard. Modeled traffic noise levels at this impacted receptor ranges up to 68 dBA $L_{eq}(h)$ under future conditions. This impacted receptor is a first row receptor, a residence with outdoor active use areas nearest the highway. There is no existing sound barrier to protect impacted receptor locations in this area from traffic noise on SR 14. Because the predicted future noise levels exceed 67 dBA $L_{eq}(h)$, traffic noise impacts are predicted at residences in this area, and noise abatement must be considered. Impacted receptor R42 represents a total of 4 residences in Area B.
- Area D Impacted Receptor Locations R44, R47, and R52. These receptor locations represent existing single family residences located on Oak Street, Elm Street, and Orange Street along the east side of SR 14, south of Rosamond Boulevard. Modeled traffic noise levels at these impacted receptors range from 68 dBA to 71 dBA L_{eq}(h). These impacted receptors are first row receptors, the residences with outdoor active use areas nearest the highway. There is an existing 8 foot sound wall along the property line of the residential land uses south of Area D; however, there is no existing sound barrier to protect the impacted receptor locations in Area D from traffic noise on SR 14. Because the existing and predicted future noise levels exceed 67 dBA L_{eq}(h), traffic noise impacts are predicted at residences in this area, and noise abatement must be considered. Impacted receptors R44, R47, and R52 represent a total of 8 residences in Area B.

Table 9: Existing and Projected Future (2035) Traffic Noise Levels

	l l	Existing	Future (2035)	Change from
Dogonton		Noise Level	Noise Levels	Existing Level
Receptor	.			
Number	Location	(dBA L _{eq} (h))	(dBA L _{eq} (h))	(dBA L _{eq} (h))
R1	Haven Street	66	68	2
R2	Haven Street	68 ^a	70	2
R3	Haven Street	67	70	3
R4	Haven Street	68	71	3
R5	Haven Street	68	70	2
R6	Alexander Avenue	64	67	3
R7	Rosewood Avenue	64	67	3
R8	Shelly Avenue	64	67	3
R9	Shelly Avenue	65	68	3
R10	Shelly Avenue	65	68	3
R11	Shelly Avenue	64	66	2
R12	Shelly Avenue	63	65	2
R13	Rosewood Avenue	63	66	3
R14	Alexander Avenue	62	65	3
R15	Rosewood Avenue	59	62	3
R16	Haven Street	56	58	2
R17	Haven Street	55	57	2
R18	Haven Street	54	57	3
R19	Haven Street	53	56	3
R20	Haven Street	56	59	3
R21	Haven Street	56	59	3
R22	Laurel Street	60	61	1
R23	Laurel Street	62	64	2
R24	Laurel Street	58	60	2
R25	Laurel Street	61	62	1
R26	Laurel Street	62	64	2
R27	Laurel Street	67	68	1
R28	Poplar Street	68	71	3
R29	Poplar Street	64	66	2
R30	Poplar Street	59	61	2
R31	Poplar Street	60	63	3
R32	Poplar Street	57	59	2
R33	Acacia Street	58	60	2
R34	Acacia Street	57	58	1
R35	Acacia Street	57	59	2
R36	Acacia Street	58	59	1
R37	C Street	60	62	2
R38	C Street	57	59	2
R39	C Street	59	61	2
R40	Poplar Street	60 50	63	3
R41	Poplar Street	59	61	2
R42	Poplar Street	65	68	3
R43	Poplar Street	61	64	3
R44	Oak Street	68	71 62	3 2
R45	Oak Street	60		
R46	Oak Street	57	59	2
R47	Elm Street	68	70	2
R48	Elm Street	56	59	3
R49				2
R50				3
R51				2
R52				3
R53				3 2
R R R	249 250 251 252	Elm Street Elm Street Elm Street Orange Street Orange Street Orange Street Orange Street	249 Elm Street 60 250 Elm Street 59 251 Orange Street 57 252 Orange Street 67 253 Orange Street 60	249 Elm Street 60 62 250 Elm Street 59 62 251 Orange Street 57 59 252 Orange Street 67 70 253 Orange Street 60 63 254 Orange Street 57 59

^a Numbers in **bold** indicate noise levels that exceed the 67 dBA L_{eq}(h) NAC.

Modeling of Sound Barriers

Modeled locations that would experience traffic noise levels in excess of the 67 dBA $L_{\rm eq}(h)$ NAC are considered impacted receptors and abatement should be considered. Therefore, noise abatement in the form of sound barriers was analyzed for each of these impacted sensitive receptor locations. Sound barriers were modeled between the SR 14 and the residential property lines. The TNM 2.5 printouts for the sound barrier model runs are located in Appendix E. The following details the sound barriers analyzed to protect the impacted sensitive receptor locations, locations that would experience traffic noise levels exceeding the 67 dBA $L_{\rm eq}(h)$ NAC:

- Area A Sound Barrier 'SB1.' Detailed modeling analysis was conducted for a barrier located at the edge of the shoulder of SR 14 adjacent to study Area A. The barrier evaluated is identified as barrier SB1 in Figure 2. Due to topographic differences between the roadway and adjacent land uses in Area A, the sound barrier must be located at the edge of shoulder in order to be feasible. In addition, as portions of the sound barrier would be located within 14 feet of the edge of the travel lane, sound barrier heights greater than 14 feet were not considered feasible. Therefore, barrier heights in the range of 6 to 14 feet were evaluated in 2-foot increments. Table 10 summarizes the results of the barrier analysis for each receiver location in Area A. Table 11 summarizes the calculated noise reductions for each modeled barrier height. Sound barrier SB1, approximately 2,152 feet in length, begins approximately 460 feet north of Rosamond Boulevard and extends to the north to provide protection to the impacted modeled receptor locations R1 through R5, R9, and R10, representing a total of 21 impacted single family residential units.
- Area B Sound Barrier 'SB2.' Detailed modeling analysis was conducted for a barrier located at the edge of the shoulder of SR 14 adjacent to study Area B. The barrier evaluated is identified as barrier SB2 in Figure 2. Barrier heights in the range of 6 to 16 feet were evaluated in 2-foot increments. Table 10 summarizes the results of the barrier analysis for each receiver location in Area B. Table 11 summarizes the calculated noise reductions for each modeled barrier height. Sound barrier SB2, approximately 1,192 feet in length, begins approximately 245 feet south of Rosamond Boulevard and extends to the south to provide protection to the impacted modeled receptor locations R27 and R28, representing a total of 2 impacted single family residential units.
- Area C Sound Barrier 'SB3.' Detailed modeling analysis was conducted for a barrier located at the edge of the shoulder of SR 14 adjacent to study Area C. The barrier evaluated is identified as barrier SB3 in Figure 2. Barrier heights in the range of 6 to 16 feet were evaluated in 2-foot increments. Table 10 summarizes the results of the barrier analysis for each receiver location in Area C. Table 11 summarizes the calculated noise reductions for each modeled barrier height. Sound barrier SB2, approximately 602 feet in length, begins approximately 820 feet south of Rosamond Boulevard and extends to the south to provide protection to the impacted modeled receptor location R42, representing a total of 4 impacted multi-family residential units.
- Area D Sound Barrier 'SB4.' Detailed modeling analysis was conducted for a barrier located at the edge of the shoulder of SR 14 adjacent to study Area D. The barrier evaluated is identified as barrier SB4 in Figure 2. Barrier heights in the range of 6 to 16 feet were evaluated in 2-foot increments. Table 10 summarizes the results of the barrier analysis for each receiver location in Area C. Table 11 summarizes the calculated noise reductions for each modeled barrier height. Sound barrier SB4, approximately 2,152 feet in length, begins approximately 1,720 feet south of Rosamond Boulevard and extends to the south to provide protection to the impacted modeled receptor locations R44, R47, and R52, representing a total of 8 impacted single family residential units.

Table 10: Sound Barrier Modeling Results, dBA L_{eq}(h)

Table 10: So	Sound		Existing	Future (2035) w/o Barriers	With Bar	ı 6 ft	With Bar	18ft		10 ft rier	With Bar	12 ft		14 ft	With Bar	16 ft
Study Area	Barrier Number	Receptor Number	U										Bar			
Study Area	Number		L _{eq(h)}	L _{eq(h)}	L _{eq(h)}	I.L.	L _{eq(h)}	I.L.	L _{eq(h)}	I.L.	L _{eq(h)}	I.L.	L _{eq(h)}	I.L.	L _{eq(h)}	I.L.
		R1 R2	66	68	62 63	<u>6</u> 7	62	6	60	8	59 59	9	58 58	10	NF NF	-
		R2 R3	68 67	70 70	63	<u>/</u> 7	62 62	<u>8</u>	61 61	<u>9</u> 9	59	11 11	58	12 12	NF NF	-
		R4	68	70	65	<u>/</u>	63	8	62	9	60	11	58	13	NF	_
		R5	68	70	65	5	63	7	62	8	60	10	59	11	NF	_
		R6	64	67	66	1	64	3	63	4	61	6	59	8	NF	_
		R7	64	67	65	2	64	3	63	4	61	6	60	7	NF	_
		R8	64	67	64	3	63	4	62	5	60	7	58	9	NF	-
		R9	65	68	66	2	64	4	63	5	62	6	60	8	NF	-
		R10	65	68	66	2	66	2	64	4	63	<u>5</u>	61	7	NF	i -
Area A	SB1	R11	64	66	64	2	63	3	62	4	61	<u>5</u>	61	<u>5</u>	NF	-
		R12	63	65	64	1	63	2	63	2	62	3	62	3	NF	-
		R13	63	66	64	2	62	4	61	<u>5</u>	60	<u>6</u>	58	<u>8</u>	NF	-
		R14	62	65	62	3	61	4	60	<u>5</u>	59	<u>6</u>	57	8	NF	-
		R15	59	62	60	2	59	3	58	4	57	5	56	<u>6</u>	NF	-
		R16	56	58	58	0	57	1	56	2	55	3	54	4	NF	-
		R17	55	57	56	1	56	1	55	2	54	3	53	4	NF	-
		R18	54	57	55	2	55	2	55	2	54	3	53	4	NF	-
		R19	53	56	54	2	54	2	53	3	52	4	52	4	NF	
		R20	56	59	56	3	56	3	55	4	54	5	54	<u>5</u>	NF	-
		R21	56	59	57	2	57	2	57	2	57	2	57	2	NF	-
		R22	60	61	59	2	59	2	58	3	58	3	58	3	57	4
		R23	62	64	63	1	62	2	61	3	60	4	59	<u>5</u>	59	<u>5</u>
		R24	59	60	58	2	58	2	57	3	57	3	56	4	56	4
		R25	61	62	60	2	60	2	59	3	58	4	57	<u>5</u>	57	<u>5</u>
Area B	SB2	R26	62	64	62	2	61	3	60	4	59	<u>5</u>	59	<u>5</u>	58	<u>6</u>
		R27	69	68	65	3	63	<u>5</u>	62	<u>6</u>	60	<u>8</u>	59	9	58	<u>10</u>
		R28	69	71	66	<u>5</u>	65	<u>6</u>	65	<u>6</u>	63	<u>8</u>	63	<u>8</u>	63	<u>8</u>
		R29	65	66	63	3	63	3	63	3	62	4	61	<u>5</u>	61	<u>5</u>
		R30	59	61	60	1	59	2	59	2	58	3	58	3	58	3
		R31	60	63	60	3	60	3	59	4	57	<u>6</u>	56	<u>7</u>	56	<u>7</u>

^a Numbers in **bold** indicate noise levels that exceed the 67 dBA L_{eq}(h) NAC.

P:\KCG1001 Kern COG\Noise Tech Report SR14(Final).doc (2/4/2011)

^b <u>Underlined</u> values indicated insertion losses greater than the minimum 5 dBA reduction required for noise abatement to be considered feasible.

 $[\]overline{ft = feet}$ $L_{eq(h)} = Equivalent Sound Level per Hour$

I.L. = Insertion Loss, the decibel reduction with insertion of the modeled sound barrier

NF = Not Feasible at this height due to terrain features restricting sound barrier location.

	Sound Barrier	Receptor	Existing	Future (2035) w/o Barriers	With Bar	ı 6 ft rier	With Bar	n 8 ft rier	With Bar	10 ft rier		12 ft rier	With Bar	14 ft rier	With Bar	16 ft rier
Study Area	Number	Number	$L_{eq(h)}$	$L_{eq(h)}$	L _{eq(h)}	I.L.	$L_{eq(h)}$	I.L.	$L_{eq(h)}$	I.L.	$L_{eq(h)}$	I.L.	$L_{eq(h)}$	I.L.	$L_{eq(h)}$	I.L.
		R32	56	59	57	2	57	2	56	3	55	4	54	<u>5</u>	54	<u>5</u>
		R33	58	60	58	2	58	2	57	3	56	4	56	4	55	<u>5</u>
Area B	SB2	R34	57	58	57	1	57	1	57	1	56	2	55	3	55	3
		R35	57	59	58	1	58	1	57	2	57	2	56	3	56	3
		R36	57	59	59	0	59	0	59	0	58	1	58	1	58	1
		R37	61	62	62	0	62	0	62	0	62	0	62	0	62	0
		R38	57	59	58	1	58	1	58	1	58	1	58	1	58	1
		R39	59	61	60	1	59	2	59	2	58	3	58	3	58	3
Area C	SB3	R40	60	63	60	3	60	3	60	3	59	4	59	4	59	4
		R41	59	61	59	2	59	2	59	2	58	3	58	3	58	3
		R42	66	68	63	<u>5</u>	62	<u>6</u>	62	<u>6</u>	61	<u>7</u>	60	<u>8</u>	60	8
		R43	61	64	61	3	60	4	60	4	59	<u>5</u>	58	<u>6</u>	58	6
		R44	68	71	65	<u>6</u>	65	<u>6</u>	64	<u>7</u>	63	<u>8</u>	63	<u>8</u>	63	<u>8</u>
		R45	60	62	60	2	60	2	59	3	59	3	58	4	58	4
		R46	57	59	58	1	57	2	57	2	57	2	56	3	56	3
		R47	68	70	64	<u>6</u>	63	<u>7</u>	62	<u>8</u>	61	9	60	<u>10</u>	60	<u>10</u>
		R48	56	59	57	2	56	3	56	3	55	4	55	4	55	4
Area D	SB4	R49	60	62	59	3	59	3	58	4	57	<u>5</u>	57	<u>5</u>	57	<u>5</u>
		R50	59	62	59	3	58	4	58	4	57	5	56	6	56	6
		R51	57	59	57	2	57	2	56	3	55	4	55	4	55	4
		R52	67	70	65	<u>5</u>	64	6	64	6	63	7	63	7	63	7
		R53	60	63	60	3	59	4	59	4	58	5	58	5	58	<u>5</u>
		R54	57	59	57	2	57	2	56	3	56	3	55	4	55	4

26 P:\KCG1001 Kern COG\Noise Tech Report SR14(Final).doc (2/4/2011)

 $^{^{}a}$ Numbers in **bold** indicate noise levels that exceed the 67 dBA $L_{eq}(h)$ NAC. b <u>Underlined</u> values indicated insertion losses greater than the minimum 5 dBA reduction required for noise abatement to be considered feasible.

 $[\]overline{\text{ft} = \text{feet } L_{\text{eq(h)}}} = \text{Equivalent Sound Level per Hour}$

I.L. = Insertion Loss, the decibel reduction with insertion of the modeled sound barrier

NF = Not Feasible at this height due to terrain features restricting sound barrier location.

H. FEASIBILITY AND REASONABLE ALLOWANCE CALCULATION

This section outlines the criteria for determination of feasible and reasonable noise abatement, and presents the preliminary feasible and reasonable cost allowance calculation for the modeled sound barriers. Noise barriers were considered to protect the impacted properties in the study area, where sensitive receptors currently are and would continue to be exposed to traffic noise levels exceeding 67 dBA $L_{eq}(h)$. A noise abatement analysis was conducted to determine the noise attenuation provided by sound barriers of heights varying from 6 to 16 feet. Caltrans criteria, as outlined in the Protocol, were used for the determination of feasible abatement and for the calculation of the reasonable cost allowance.

Feasibility. Section 3 of the Protocol states that a minimum noise reduction of 5 dBA must be achieved at the impacted receptors in order for the proposed noise abatement measure to be considered feasible. The feasibility criterion is not necessarily a noise abatement design goal. Greater noise reductions are encouraged if they can be reasonably achieved. The following elements may restrict feasibility:

- Topography
- Access requirements for driveways, ramps, etc.
- Location of local streets in relation to the proposed project
- Other noise sources in the area
- Safety considerations

Table 10 shows the sound levels at the sensitive receptors with and without the sound barriers for future PM peak traffic noise conditions. As shown in Table 10, the modeled sound barriers for each study area, would reduce traffic noise levels by 5 dBA or more at impacted modeled receptor locations and are therefore determined to be feasible.

All feasible sound barriers for each of the build alternatives are listed in Table 11. Table 11 shows the heights and lengths of each feasible sound barrier, the critical receptor and protected receptor locations, the number of benefited residences, reasonable allowance per residence, and the total reasonable allowance. Each modeled receptor location that is attenuated by at least 5 dBA is considered to be a benefited receptor. The locations of the feasible sound barriers and the modeled receptor locations are shown in Figure 2. In summary, sound barriers SB1, SB2, SB3, and SB4 were all determined to be feasible at a minimum height of 6 feet.

Table 11: Summary of Reasonable Allowance Calculation for Feasible Sound Barriers

Sound				Noise Reduction		Number of	Reasonable Allowance	Total	Estimated Sound	
Barrier	Critical	Length	Height	Range	Protected Modeled	Benefited	per	Reasonable	Barrier	Preliminarily
Number	Receptor	(ft)	(ft)	(dBA)	Receptor Locations a	Residences	Residence	Allowance	Cost b	Reasonable?
			6	0 - 7	R1-R5	15	\$37,000	\$555,000	\$516,480	Yes
			8	1 - 8	R1-R5	15	\$37,000	\$555,000	\$688,640	No
SB1	R4	2,152	10	2 - 9	R1-R5, R8, R9, R13, R14	25	\$39,000	\$975,000	\$860,800	Yes
			12	2 - 11	R1-R11, R13-R15, R20	R1-R11, R13-R15, R20 37 \$39,	\$39,000	\$1,443,000	\$1,032,960	Yes
			14	2 - 13	R1-R11, R13-R15, R20	37	\$41,000	\$1,517,000	\$1,205,120	Yes
			6	0 - 5	R28	1	\$33,000	\$33,000	\$286,080	No
	R28	1,192	8	0 - 6	R27, R28	2	\$35,000	\$70,000	\$381,440	No
SB2			10	0 - 6	R27, R28	2	\$35,000	\$70,000	\$476,800	No
			12	1 - 8	R26-R28, R31	6	\$35,000	\$210,000	\$572,160	No
			14	1 - 9	R23, R25-R29, R31, R32	14	\$35,000	\$490,000	\$667,520	No
			16	1 - 10	R23, R25-R29, R31-R33	17	\$35,000	\$595,000	\$762,880	No
	R42	602	6	0 - 5	R42	4	\$35,000	\$140,000	\$144,480	No
			8	0 - 6	R42	4	\$37,000	\$148,000	\$192,640	No
SB3			10	0 - 6	R42	4	\$37,000	\$148,000	\$240,800	No
303			12	0 - 7	R42, R43	8	\$37,000	\$296,000	\$288,960	Yes
			14	0 - 8	R42, R43	8	\$37,000	\$296,000	\$337,120	No
			16	0 - 8	R42, R43	8	\$37,000	\$296,000	\$385,280	No
		1,150	6	1 - 6	R44, R47, R52	8	\$37,000	\$296,000	\$276,000	Yes
			8	2 - 7	R44, R47, R52	8	\$37,000	\$296,000	\$368,000	No
SB4	R44		10	2 - 8	R44, R47, R52	8	\$37,000	\$296,000	\$460,000	No
SD4	N44	1,130	12	2 - 9	R44, R47, R49, R50, R52, R53	19	\$37,000	\$703,000	\$552,000	Yes
			14	3 - 10	R44, R47, R49, R50, R52, R53	19	\$37,000	\$703,000	\$644,000	Yes
			16	3 - 10	R44, R47, R49, R50, R52, R53	19	\$37,000	\$703,000	\$736,000	No

^a Modeled receptor locations that would experience a minimum 5 dBA reduction in traffic noise levels with the indicated sound barrier.

P.|KCG1001 Kern COG|Noise Tech Report SR14(Final).doc (2/4/2011) 28

 $^{^{}b}$ Cost calculations were based on a construction cost estimate of \$40 per square foot for each sound barrier. dBA = A-weighted decibel ft = feet

Reasonable Allowance. For each noise barrier found to be acoustically feasible, preliminary reasonable cost allowances were calculated. Worksheets provided in Appendix F summarize the reasonable cost allowance calculations at the critical design receptor based on the allowance calculation procedure identified in the Protocol.⁵

A preliminary reasonableness analysis is based on an estimated sound barrier cost. For any noise barrier to be considered reasonable from a cost perspective, the estimated cost of the noise barrier should be equal to or less than the total cost allowance calculated for the barrier. A preliminary construction cost estimate for each feasible sound barrier is provided in Table 11. These preliminary construction cost calculations were based on a conservative cost estimate of \$40 per square foot. During the Noise Barrier Scope Summary Report (NBSSR) phase, when an actual project design and sound barrier construction cost is available, the design team will conduct a detailed cost effectiveness analysis.

During the NBSSR phase, a community meeting will be arranged to obtain community input to determine whether residents favor the sound barrier. Noise abatement measures using sound barriers along the State right-of-way will not be provided if 50 percent or more of the affected residents are not in favor of the barrier.

The overall reasonableness of noise abatement is determined by considering a multitude of factors including but not necessarily limited to the following:

- a) Cost of the abatement;
- b) Absolute noise levels;
- c) Change in noise levels;
- d) Noise abatement benefits;
- e) Date of development along the highway;
- f) Life cycle of abatement measures;
- g) Environmental impact of abatement construction;
- h) Views (opinions) of impacted residents;
- i) Input from the public and local agencies; and
- j) Social, economic, environmental, legal, and technological factors.

Based on the studies completed so far, the barriers identified in Table 11 have been determined to be feasible and preliminarily reasonable. If the proposed modeled sound barriers are selected for construction, final construction cost estimates will be prepared by the project engineer and would be presented in the NBSSR. The NBSSR is a design responsibility and is prepared to compile information from this noise barrier study, other relevant environmental studies, and design considerations into a single, comprehensive document before public review of the project. The final decision on noise barriers will be made upon completion of the project design and public involvement processes. The public involvement process will include a public hearing or community meeting. As

_

⁵ Refer to the Protocol for the definition of the critical design receptor.

previously stated, barriers will not be provided if 50 percent or more of the affected residents do not favor the barriers.

The design of noise barriers presented in this report is preliminary and has been conducted at a level appropriate for preliminary environmental review and not for final design of the project. Preliminary information on the physical location, length, and height of noise barriers is provided in this report. If pertinent parameters change substantially during the final project design, preliminary noise barrier designs may be modified or eliminated from the final project. A final decision on the construction of the noise abatement will be made upon completion of the project design.

Conclusion

This noise report has identified traffic noise impacts on existing noise sensitive receptors in the study area. To reduce this impact, this study analyzed the feasible and reasonable noise abatement in the form of sound barriers. The results show that sound barriers **SB1**, **SB2**, **SB3**, and **SB4** would be feasible because these barriers would provide at least 5 dBA noise reduction at impacted sensitive receptors in the study areas. However, only sound barriers **SB1**, **SB3**, and **SB4** are shown to be preliminarily reasonable because they meet the preliminary reasonable cost-effective criteria for the following indicated heights; while sound barrier **SB2** does not meet the preliminary reasonable cost-effective criteria at any modeled height.

- **SB1** at heights of 6, 10, 12, and 14 feet;
- SB3 at a height of 12 feet; and
- **SB4** at heights of 6, 12, and 14 feet.

Therefore, it is recommended that the retrofit sound barrier analysis for the identified impacted receptor locations proceed to the next step of preparation of an NBSSR.

Once the NBSSR is prepared, Kern COG should prioritize the list of sound barriers and then proceed to the design and construction phases based on the availability of funds. If, during final design, conditions have substantially changed, these noise barriers may not be provided. The final decision on noise barriers will be made upon completion of the project design and public involvement processes. The public involvement process will include a public hearing or community meeting. Based on FHWA guidelines, retrofit sound barriers will not be provided if 50 percent or more of the affected residents do not favor the barriers.

APPENDIX A NOISE MONITORING RESULTS AND TRAFFIC DATA

Project Number:	KCG/00/	**************************************		Sheet	_of
Project Name:					<u>. </u>
Test Personnel: 1	1. skiffler				
	Noise I	Measurement	Survey		
			·		
Site Number: M	Date: <u>_ 7/22//0</u>	Time:	From <u>[]:08</u>	To	-3
Site Location:	322 Haven	St.			
· • • • • • • • • • • • • • • • • • • •		- 7MANAF- M - 1			
	· · · · · · · · · · · · · · · · · · ·				
Primary Noise Sou	rces:	THE PARTY OF THE P			
			WILL BUT HE		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Measurement Res	ulto C	Observed Noise Sou	mana/Erromta		
dE		· ····························	ise Source/Event		dBA
Leq 64.6		110	180 Source/Event		UDA
Lmax 76.					
Lmin 44.			· Politicals		
Lpeak 108.					
L2 73.7			* 73/2/1000-00 ⁻⁷ **-		
L8 69.2			7707HT700.4.4.11		
L25 61.7	10000				
L50 54.0			- 11 MARIN		
SEL					
Comments: offs	1111.3				
Comments			- Section Hills A		
				-NC-1	
Equipment: Larson			Calibration Offset		_dBA
Settings: A-Weighte	ed□ Other□	Slow□	l Fast□ Win	ndscreen□	
Atmoonhorio Con	litiana.				
Atmospheric Cond Maximum Wind	Average Wind		Relative		
Velocity (mph)	Velocity (mph)	Temperature (F)	Humidity (%)		
-t-+ 4-1	WI 1.7	95.5	14.6		
" J" -		17.3	11.0	<u> </u>	
Comments:			***************************************		

Photo	e Ta	ken:
1 HUU	o ia	ren.

Photo Number	Location/Description	 	· · · · · · · · · · · · · · · · · · ·

1015			

Traffic Description:

Roadway	# Lanes	Posted Speed	Average Speed	NB/EB Counts	SB)WB Counts
5'R 14			- - - -	366	390
				30	64
				84	108
				6	Õ

			***************************************	<u> </u>	<u> </u>

Diagram/Further	Comments	•			
5				•	
					,
					•
				, .	
					•
					•
		•			
	•				•
	******		-100		

Project Number: <u>K(G 1001</u> Project Name: Test Personnel: <u>N. Sh'Fller</u>			Sheetof				
Test Personnel:	l. Shiffler						
	Nois	e Measu	rement	Survey			
Site Number: <u>MZ</u>	Date: _ 7/21	סון	Time:	From /0.32	To /o :	47	
Site Location:	,						
Primary Noise Sour	ces:						
Measurement Resi			\-\	rces/Events			
Leq 54.6		Time	No	ise Source/Event		dBA	
Lmax 75.7	i						
Lmin 45.2	l l						
Lpeak /07.3							
L2 64.7 L8 <6. 2							
L25 52.1 L50 48.2							
SEL SEL					***************************************		
Comments: <u>Off</u>	set 114.2						
Equipment: <u>Larson</u> Settings: A-Weighte	ed□ Other□	; Kestrel 30		Calibration Offs I Fast□ V	set:Windscreen[dBA ⊐	
Atmospheric Cond Maximum Wind	Average Wind	1		Relative			
Velocity (mph)	Velocity (mpl	n) Tempe	rature (F)	Humidity (%))		
5.3	0.9	9	7.0	12.1			
Comments:							

\mathbf{p}_{1}	h	n	ŀ٠	· C	Т	'al	ken	
	ш		и.		- 1	<i>a</i>	N	

Photo Number	Location/Description
	,

Traffic Description:

Roadway	# Lanes	Posted Speed	Average Speed	NBÆB Counts	SB/WB Counts
5R 14				444	822
				54	36
				84	49
				6	0

Diagram/Further Comments:	·	•
		·

Project Number: _/	<i>KCG10</i> 0)			Sheetof
Project Name:	1. Stiffler			
	Noise I	Measurement (Survev	
Site Number: M3			v	To 10:08
				10 70.00
Primary Noise Sour	rces:			
Measurement Res	ults O	bserved Noise Sou	rces/Events	
dB		me No	ise Source/Event	dBA
Leq 66.	- 1			
Lmax 76.				
Lmin 51.3 Lpeak 117.6	7			
L2 73.5				
L8 69.6			AAAA Nadahan ahaan ah	
L25 64.6				
L50 58,3			·········	
SEL				
Comments: Of	Sef 114.2			
Equipment: <u>Larson</u> Settings: A-Weighte	ed□ Other□		Calibration Offse I Fast□ Wi	t:dBA indscreen□
Atmospheric Cond			T 4 .1	
Maximum Wind Velocity (mph)	Average Wind Velocity (mph)	Temperature (E)	Relative	
velocity (mpn)	6.0	Temperature (F)	Humidity (%)	
118	٥.0	77.0	16.2	
Comments:				

P	h	n	fn	Q	Т	'al	ke	'n	
1.			11			<i>a</i>		. 1	

Photo Number	Location/Description

Traffic Description:

Traine Descrip	711011.			^	/
Roadway	# Lanes	Posted Speed	Average Speed	NB/EB Counts	(SB/WB Counts
5R 14				480	612
				66	18
				79,	72
				6	Ö

Diagram/Further Comments:	
	•
	·,

C:\LARDAV\SLMUTIL\SR14~1.bin interval Data

	antiLog	7.41 25703958	7.38 23988329	7.37 23442288	7.49 30902954	7.53 33884416	7.52 33113112	7.44 27542287	7.35 22387211	7.3 19952623	7.19 15488166	8.06 1.15E+08	7.84 69183097	7.74 54954087	8.58 3.8E+08	1,,	73 5.37E+08	9.07 1.17E+09	9.46 2.88E+09	9.63 4.27E+09	8.57 3.72E+08		8.36 2.29E+08	31 20417379		1.1E+10	4.58E+08	8.660438	86.60438	87
	0.1*Leq										_													1 7.31				m/48)	(Sum/48)	up
	Led,	74.							73.5					L						96.3			83.6			Sum	Sum/48	Log10(Sum/48)	10*Log10(Sum/48	24 Hour Ldn
	Hourly Lea	1.47					75.2		73.5	73.0		80.6	78.4	77.4	3.67					86.3	75.7	74.1	73.6	73.1	72.8					
ations	Time	12:00:00	13:00:00	14:00:00	15:00:00	16:00:00	17:00:00	18:00:00	19:00:00	20:00:00	21:00:00	22:00:00	23:00:00	0:00:0	1:00:00	2:00:00	3:00:00	4:00:00	5:00:00	6:00:00	7:00:00	8:00:00	9:00:00	10:00:00	11:00:00					
Ldn Calculations		Day	21-Jun									Night	21~Jun	22~Jun							Day									
6)		63.4	62.8	61.7	62.7	64.4	99	66.2	63.5	61.2	9.09	58.3	54.4	49.8	45	40.4	40.1	45.4	55	62.7	65.4	64.2	61.6	61.2	60.5	59.6				
(20) (20)		71.2	70.9	70.4	70.8	72	73.3	73.3	72	70.3	70	67.9	64.3	60.2	57.2	53.1	54.2	57.2	64.1	72.1	74.5	73.5	71.2	70.1	69.2	68.8				
L(25) L(E		75.2	75	75	74.9	75.9	76.8	76.6	75.8	74.9	74.3	73.2	71.1	67.6	4	61.3	61.4	63.5	70.2	76	7.77	77.2	75.4	74.5	74.1	73.8				
L(10) L(78	78.1	78.1	77.8	78.6	79	78.9	78.3	77.7	77.1	76.2	75.1	72.9	71.2	69.4	68.7	70.6	75	78.7	79.8	79.6	78.3	77.8	77.4	77.1				
Peak L(130.7	113.6	103.9	100.5	108	108.4	106.5	107.3	105.3	100.5	8.66	105.2	98.4	86	98.3	98.3	101.1	100.8	100.6	106.1	110.2	101.3	104.7	104.4	117.2				
Lmin P		56.8	53.4	47.6	52.2	54.6	55.8	55.1	53.8	50.5	51.3	47.3	43.1	41.1	36.5	33.7	33.4	36.2	45	52.8	54.6	52.9	51.4	49.7	49.9	47.5				
Lmax	;	င္တ	89.9	88.1	86.4	92.9	8	8	91.7	87	87.2	86.9	86.6	85.5	4	83.7	82,4	82	85.3	86.3	90.4	ස	86.7	87.7	86.9	85.5				
SEL		106.2	109.7	109.4	109.3	110,4	110.9	110.8	110	109.1	108.6	107.4	106.2	103.9	103	101.4	101	102.9	106.3	110.2	111.8	111.2	109.7	109.2	108.7	107.7				
Led	i	7.4.7	74.1	73.8	73.7	74.9	75.3	75.2	74.4	73.5	73	71.9	70.6	68.4	67.4	65.8	65.4	67.3	7.07	74.6	76.3	75.7	74.1	73.6	73.1	72.8				
Duration L	1	1404.2	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3071.8				
Time D	1	11:36:35	12:00:00	13:00:00	14:00:00	15:00:00	16:00:00	17:00:00	18:00:00	19:00:00	20:00:00	21:00:00	22:00:00	23:00:00	0:00:0	1:00:00	2:00:00	3:00:00	4:00:00	5:00:00	6:00:00	7:00:00	8:00:00	9:00:00	10:00:00	11:00:00				
Date		21Jul 10 21Jul 10	21Jul 10	21Jul 10	21Jul 10	22Jul 10	22Jul 10	22Jul 10	22Jul 10	22Jul 10	22Jul 10	22Jul 10	22Jul 10	22Jul 10	22Jul 10	22Jul 10	22Juf 10													

YEAR VER/ EST	1 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	08V	08E	回 8 0	日80	08日	086	04E	04E	回 8 0	380	380 380	08V
EAL 2-WAY (1000)	1583	978	828	630	389	367	3 3 5	890	464	266	297	275	146
5+ 5	41.78	46.3	43.3	40.3	37.3	37.3	37.3	74	71	52	80	72.69	67.55
ok aadu axle	4.33	5.35	4.04	4.53	4.12	4.12	4.12	N	m	0	2.5	5.19	7.27
TRUCK AADT - By Axle - 3 4	7.82	80.08	8.08	7.19	6.29	6.29	6.29	ø	4	9 1	5.5	7.37	10.99
2 %	46.07	39.37	43.68	47.98	52.29	52.29	52.29	18	22	22	12	14.75	14.18
TOTAL 5+	3804	2389	2000	1500	913	862	786	2438	1264	638	821	740	381
AADT Axle 4		276	228	69 H	101	35 3.W.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	99	53	123	5 6	വ	41
TRUCK	712	463	373	268	154	145	133	198	71	196	56	75	62
2	4194	2031	2017	1786	1280	1209	1102	593	392	270	123	150	80
TRUCK % TOT VEH	5.62	5,32	5.92	4.23	6.8	6.8	8.	18	10	18.05	19	18.85	19,45
TRUCK AADT TOTAL	9104	5160	4618	3722	2448	2312	2108	3294	1780	1227	1026	1018	564
VEHICLE AADT TOTAL	162000	97000	78000	88000	36000	34000	31000	18300	17800	6800	5400	5400	2900
D POST E MILE G DESCRIPTION	R24.788 A SB OFF TO SB RTE 5 & JCT. RTE. 5, GOLDEN STATE FREEWAY INTERCHANGE	R54.543 B ANGELES FOREST HIGHWAY INTERCHANGE	R59.803 B PALMDALE, SOUTH JCT. RTE. 138, PALMDALE BOULEVARD	R59.803 A PALMDALE, SOUTH JCT. RTE. 138, PALMDALE BOULEVARD	R74.003 B NORTH JCT. RTE. 138; AVENUE D INTERCHANGE	R74.003 A NORTH JCT. RTE. 138; AVENUE D INTERCHANGE	RO A AVENUE A INTERCHANGE, LOS ANGELES/KERN COUNTY LINE	L17.384 B JCT. RTE. 58	16.07 A JCT. RTE. 58	21.29 A RANDSBURG CUT-OFF ROAD, CALIFORNIA CITY/BAKERSFIELD ROAD	57.767 B FREEMAN JUNCTION, JCT. RTE. 178 WEST	57.767 A FREEMAN JUNCTION, JCT. RIE. 178 WEST	64.559 B HOMESTEAD NORTH JUNCTION, JCT. RIE. 395
r cnty	LA	LA	LA	LA	ГA	LA	KER	KER	KER	KER	KER	KER	KER
DIST	0.7	07	0.7	07	0.7	07	9	90	90	90	90	90	9 0
RTE	[0 [H [4,	014	014	014	014	014	014	014	014	014	014	014	014

Vehicle Percentage Calculations

Existing Traffic Volumes		Traf	ffic Distributi	no	Tra	ffic Volumes	S		
1			Medium	Heavy		Medium	Heavy		
	PM Peak*	Autos**	Trucks**	Trucks**	Autos	Trucks	Trucks	Speeds	
SR 14 (NB)	1166	6.0	0.04	0.03	1085	47	35	65/55	
SR 14 (SB)	792	0.93	0.04	0.03	737	32	24	65/55	
On Ramp fr Rosamond Blvd (NB)	229	0.93	0.04	0.03	213	6	7	35	
Off Ramp to Rosamond Blvd (NB)	778	0.93	0.04	0.03	724	31	23	35	
On Ramp fr Rosamond Blvd (SB)	533	0.93	0.04	0.03	496	21	16	35	
Rosamond Blvd Segment 1 (WB)	Sec. 3.1130	0.93	0.04	0.03	1051	66	74	40	
Rosamond Blvd Segment 2 (WB)	858	0.93	0.04	0.03	798	54	4	40	
Rosamond Blvd Segment 1 (EB)	622	0.93	0.04	0.03	579	45	34	40	
Rosamond Blvd Segment 2 (EB)	736	0.93	0.04	0.03	684	57	43	40	

^{*} PM Peak Hour Volumes from Kern COG Regional Tranpsortation Improvement Plan Count Summaries for year 2007 **Vehicle percentages based on Caltrans 2008 Truck Traffic Volumes

Future Traffic Volumes

		Tra	ffic Distribut	ion	Tra	ffic Volume	Se		
			Medium	Heavy		Medium	Heavy		
	PM Peak*	Autos**	Trucks**	Trucks**	Autos	Trucks	Trucks	Speeds	
SR 14 (NB)	2068	0.93	0.04	0.03	1923	83	62	65/55	
SR 14 (SB)	1490	0.93	0.04	0.03	1386	09	45	65/55	
On Ramp fr Rosamond Blvd (NB)	758	0.93	0.04	0.03	705	30	23	35	
Off Ramp to Rosamond Blvd (NB)	1226	0.93	0.04	0.03	1140	49	37	35	
On Ramp fr Rosamond Blvd (SB)	991	0.93	0.04	0.03	922	40	္က	35	
Rosamond Blvd Segment 1 (WB)	2480		0.04	0.03	2307	66	74	40	
Rosamond Blvd Segment 2 (WB)	1361	0.93	0.04	0.03	1265	54	4	40	
Rosamond Blvd Segment 1 (EB)	1124	0.93	0.04	0.03	1046	45	34	40	
Rosamond Blvd Segment 2 (EB)	1425	0.93	0.04	0.03	1325	57	43	40	

^{*} PM Peak Hour Volumes from Kern COG Regional Tranpsortation Improvement Plan Count Summaries for year 2007 **Vehicle percentages based on Caltrans 2008 Truck Traffic Volumes

APPENDIX B

TRAFFIC NOISE MODEL (TNM) 2.5 PRINTOUTS FOR CALIBRATION RUNS

LSA Associates, Inc.								16 Septen	nber 2010					
P. Ault								TNM 2.5						
								Calculate	d with TNN	1 2.5				
RESULTS: SOUND LEVELS														
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barri	er									
RUN:		Calibra	tion 1											
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement type	shall be use	d unles	ss	
									a State hi	ghway agenc	y substantiate	es the u	se	
ATMOSPHERICS:		96 deg	F, 15% RH						of a differ	ent type with	approval of F	HWA.		
Receiver														
Name	No.	#DUs	Existing	No Barrier						With Barrier				
			LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Reduc	ction		
				Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcula	ited
								Sub'l Inc					minus	
													Goal	
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB	
M1	38	3 1	0.0	66.6	3	66	66.6	12	Snd Lvl	66.6	0.0)	5	-5
Dwelling Units		# DUs	Noise Re	duction										
			Min	Avg	Max									
			dB	dB	dB									
All Selected		1	0.0	0.0)	0.0								
All Impacted		1	0.0	0.0)	0.0								
All that meet NR Goal		0	0.0	0.0)	0.0								

										_	
LSA Associates, Inc.					16 Septembe	r 2010					
P. Ault					TNM 2.5	2010					
,											
INPUT: ROADWAYS							Average p	oavement typ	e shall be	used unles	S
PROJECT/CONTRACT:	Kern CO	Retrofit	Noise Bar	rier				ghway agend			
RUN:	Calibratio	on 1						ent type with	-		
Roadway		Points					-				
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	trol		Segment	
				X		Z	Control	Speed	Percent	Pvmt	On
						_	Device	Constraint	Vehicles	Туре	Struct?
									Affected	7.	
	ft			ft	ft	ft		mph	%		
SR14 (SB)	44.0	0	1	6,510,367.0	2,139,960.0	2,386.00				Average	
,		1	2	6,510,329.0		-				Average	
		2	3	6,510,307.0						Average	
		3	4	6,510,301.0						Average	
		4	5	6,510,293.0	2,139,071.0	2,355.00				Average	
		5	6	6,510,288.0	2,138,878.0	2,352.00				Average	
		6	7	6,510,282.0	2,138,642.0	2,348.00				Average	
		7	8	6,510,269.0	2,138,379.0	2,344.00				Average	
		8	9	6,510,260.0	2,138,130.0	2,340.00				Average	
		9	10	6,510,252.0	2,137,895.0	2,338.00				Average	
		10	11	6,510,244.0	2,137,653.0	2,338.00				Average	
		11	12	6,510,234.0						Average	
		12	13	6,510,226.0		-				Average	
		13	14	6,510,210.0		-				Average	
		14	15	6,510,207.0						Average	
		15	16	6,510,199.0						Average	
		16	17	6,510,191.0						Average	
		17	18	6,510,184.0						Average	
		18	19	6,510,177.0						Average	
		19	20	6,510,168.0						Average	
		20	21	6,510,160.0						Average	
		21	22	6,510,154.0		-				Average	
		22	23	6,510,151.0						Average	
		23	24	6,510,141.0		-				Average	
		24	25	6,510,136.0	2,134,616.0	2,326.00				Average	

INI	DI.	JT:	D	\sim	ΛI	\neg	۸ı	A \	10
IIN	ru	JI:	R	U	м	וט	VV.	A I	. 3

INFOI. ROADWAIS						Keili C	OG KELLOHL MO	ise Daillei
		25	26	6,510,127.0	2,134,401.0	2,326.00		Average
		26	27	6,510,123.0	2,134,291.0	2,326.00		Average
		27	28	6,510,125.0	2,134,069.0	2,326.00		Average
		28	29	6,510,125.0	2,133,933.0	2,326.00		Average
		29	30	6,510,141.0	2,133,650.0	2,324.00		Average
		30	31	6,510,151.0	2,133,443.0	2,324.00		
SR14 (NB)	44.0	31	32	6,510,027.0	2,133,442.0	2,324.00		Average
		32	33	6,510,009.0	2,134,403.0	2,326.00		Average
		33	34	6,510,015.0	2,134,613.0	2,326.00		Average
		34	35	6,510,023.0	2,134,836.0	2,326.00		Average
		35	36	6,510,035.0	2,135,049.0	2,326.00		Average
		36	37	6,510,038.0	2,135,170.0	2,327.00		Average
		37	38	6,510,043.0	2,135,383.0	2,328.00		Average
		38	39	6,510,048.0	2,135,591.0	2,328.00		Average
		39	40	6,510,059.0	2,135,818.0	2,328.00		Average
		40	41	6,510,066.0	2,136,052.0	2,328.00		Average
		41	42	6,510,073.0	2,136,218.0	2,330.00		Average
		42	43	6,510,078.0	2,136,439.0	2,330.00		Average
		43	44	6,510,088.0	2,136,664.0	2,330.00		Average
		44	45	6,510,097.0	2,136,895.0	2,330.00		Average
		45	46	6,510,108.0	2,137,185.0	2,332.00		Average
		46	47	6,510,117.0	2,137,421.0	2,338.00		Average
		47	48	6,510,124.0	2,137,659.0	2,338.00		Average
		48	49	6,510,132.0	2,137,896.0	2,338.00		Average
		49	50	6,510,142.0	2,138,137.0	2,340.00		Average
		50	51	6,510,152.0	2,138,386.0	2,344.00		Average
		51	52	6,510,161.0	2,138,635.0	2,348.00		Average
		52	53	6,510,170.0	2,138,884.0	2,352.00		Average
		53	54	6,510,177.0	2,139,077.0	2,355.00		Average
		54	55	6,510,182.0	2,139,317.0	2,362.00		Average
		55	56	6,510,191.0	2,139,540.0	2,370.00		Average
		56	57	6,510,212.0	2,139,750.0	2,380.00		Average
		57	58	6,510,255.0	2,139,982.0	2,388.00		
On ramp fr Rosamond Blvd (NB)	20.0	0			2,136,997.0			Average
, ,		1			2,137,012.0			Average
		2		6,510,326.0		2,341.00		Average
		3			2,137,420.0			Average
		4		6,510,277.0		2,338.00		Average
		5		6,510,274.0		2,338.00		Average

INFOI. NOADWAIS					IVEI II V	CO Kellolit NC	JISE Dalliel	
		6	122	6,510,278.0 2,138,130.0			Average	
		7	123	6,510,269.0 2,138,379.0				
Off ramp to Rosamond Blvd (NB)	36.0	8	124	6,510,178.0 2,135,818.2			Average	
		9	125	6,510,214.5 2,136,047.2	2,328.00		Average	
		10	126	6,510,235.0 2,136,213.0	2,330.00		Average	
		11	127	6,510,287.0 2,136,436.0	2,330.00		Average	
		12	128	6,510,385.0 2,136,662.0	2,336.00		Average	
		13	129	6,510,601.0 2,136,903.0			Average	
		14	130	6,511,474.0 2,136,959.5				
On ramp fr W Rosamond Blvd (SB)	36.0	15	131	6,509,509.5 2,136,925.0	2,338.00		Average	
		16	132	6,509,930.0 2,136,900.0			Average	
		17	133	6,510,013.0 2,136,666.0	2,340.00		Average	
		18	134	6,510,022.0 2,136,436.0	2,335.00		Average	
		19	135	6,510,036.0 2,136,216.0	2,333.00		Average	
		20	136	6,510,041.0 2,136,051.0	2,330.00		Average	
		21	137	6,510,041.0 2,135,816.0	2,330.00		Average	
		22	138	6,510,036.0 2,135,592.0	2,328.00		Average	
		23	139	6,510,043.0 2,135,383.2	2,328.00			
Hillcrest Ave	36.0	0	140	6,510,885.0 2,139,600.0	2,364.00		Average	
		1	141	6,510,383.0 2,139,584.0	2,360.00			
Alexander Ave	36.0	2	142	6,510,886.0 2,138,554.0	2,354.00		Average	
		3	143	6,510,375.0 2,138,551.0	2,347.00			
Haven St	36.0	4	144	6,510,539.0 2,139,566.0	2,360.00		Average	
		5	145	6,510,540.0 2,138,564.0	2,352.00			
Rosewood Ave to Milstead	36.0	6	146	6,510,382.0 2,138,289.0	2,348.00		Average	
		7	147	6,510,599.0 2,138,292.0	2,352.00		Average	
		8	148	6,510,601.0 2,137,430.0	2,340.00		Average	
		9	149	6,510,405.0 2,137,425.0	2,341.00			
Rosamond Blvd WB	36.0	10	150	6,511,584.0 2,136,997.0	2,340.00		Average	
		11	151	6,510,265.0 2,136,967.0	2,352.00		Average	Υ
		12	152	6,510,032.0 2,136,964.0	2,351.00		Average	
		13	153	6,509,607.0 2,136,961.0	2,341.00			
Rosamond Blvd EB	36.0	14	154	6,509,509.5 2,136,925.0	2,338.00		Average	
		15	155	6,510,032.0 2,136,938.0	2,351.00		Average	Υ
		16	156	6,510,266.0 2,136,939.0	2,352.00		Average	
		17	157	6,510,489.0 2,136,938.0	2,349.00		Average	
		18	158	6,510,494.0 2,136,938.0	2,344.00		Average	
		19	159	6,511,478.0 2,136,960.0	2,340.00			
Laurel St to Poplar St	36.0	20	160	6,509,550.0 2,136,808.0	2,332.00		Average	
			L					

INPUT: ROADWAYS

2	21	161 6,50	09,782.0	2,136,799.0	2,330.00		Average
2	22	162 6,50	09,933.0	2,136,673.0	2,328.00		Average
2	23	163 6,50	0.869,96	2,135,807.0	2,330.00		Average
2	24	164 6,50	09,558.0	2,135,801.0	2,328.00		
36.0 2	25	165 6,51	10,941.0	2,136,720.0	2,336.00		Average
2	26	166 6,51	10,487.0	2,136,712.0	2,336.00		Average
2	27	167 6,51	10,470.0	2,135,826.0	2,328.00		Average
2	28	168 6,51	10,948.0	2,135,814.0	2,332.00		
36.0 2	29	169 6,51	10,963.0	2,134,301.0	2,324.00		Average
3	30	170 6,51	10,962.0	2,135,077.0	2,326.00		
36.0 3	31	171 6,51	10,954.5	2,134,933.8	2,326.00		Average
3	32	172 6,51	10,229.0	2,134,920.0	2,326.00		
36.0 3	33	173 6,51	10,953.5	2,134,663.0	2,326.00		Average
3	34	174 6,51	10,228.0	2,134,644.0	2,326.00		
36.0 3	35	175 6,51	10,954.0	2,134,341.2	2,324.00		Average
3	36	176 6,51	10,239.0	2,134,322.0	2,326.00		
36.0 3	37	177 6,51	10,216.0	2,135,058.0	2,326.00		Average
3	38	178 6,51	10,223.0	2,134,156.0	2,326.00		
	36.0 2 36.0 2 36.0 3 36.0 3 36.0 3 36.0 3	26 27 28 36.0 29 30 36.0 31 32 36.0 33 34 36.0 35 36	22 162 6,50 23 163 6,50 24 164 6,50 36.0 25 165 6,5 26 166 6,5 27 167 6,5 28 168 6,5 36.0 29 169 6,5 30 170 6,5 31 171 6,5 32 172 6,5 36.0 33 173 6,5 36.0 35 175 6,5 36.0 37 177 6,5	22 162 6,509,933.0 23 163 6,509,968.0 24 164 6,509,558.0 36.0 25 165 6,510,941.0 26 166 6,510,487.0 27 167 6,510,470.0 28 168 6,510,948.0 36.0 29 169 6,510,963.0 30 170 6,510,962.0 36.0 31 171 6,510,954.5 32 172 6,510,229.0 36.0 33 173 6,510,923.0 36.0 35 175 6,510,924.0 36.0 37 177 6,510,216.0	22 162 6,509,933.0 2,136,673.0 23 163 6,509,968.0 2,135,807.0 24 164 6,509,558.0 2,135,801.0 36.0 25 165 6,510,941.0 2,136,720.0 26 166 6,510,487.0 2,136,712.0 27 167 6,510,470.0 2,135,826.0 28 168 6,510,948.0 2,135,814.0 36.0 29 169 6,510,963.0 2,134,301.0 30 170 6,510,963.0 2,134,933.8 32 171 6,510,954.5 2,134,933.8 32 172 6,510,290.0 2,134,920.0 36.0 33 173 6,510,953.5 2,134,663.0 34 174 6,510,228.0 2,134,341.2 36 175 6,510,239.0 2,134,341.2 36 176 6,510,239.0 2,134,322.0 36.0 37 177 6,510,216.0 2,135,058.0	22 162 6,509,933.0 2,136,673.0 2,328.00 23 163 6,509,968.0 2,135,807.0 2,330.00 24 164 6,509,558.0 2,135,801.0 2,328.00 36.0 25 165 6,510,941.0 2,136,720.0 2,336.00 26 166 6,510,487.0 2,136,712.0 2,336.00 27 167 6,510,470.0 2,135,826.0 2,328.00 28 168 6,510,948.0 2,135,814.0 2,332.00 36.0 29 169 6,510,963.0 2,134,301.0 2,324.00 30 170 6,510,962.0 2,135,077.0 2,326.00 36.0 31 171 6,510,954.5 2,134,933.8 2,326.00 36.0 33 173 6,510,229.0 2,134,920.0 2,326.00 36.0 34 174 6,510,228.0 2,134,644.0 2,326.00 36.0 35 175 6,510,954.0 2,134,341.2 2,324.00 36.0 37 177 6,510,216.0 2,134,322.0 2,326.00 <td>22 162 6,509,933.0 2,136,673.0 2,328.00 23 163 6,509,968.0 2,135,807.0 2,330.00 24 164 6,509,558.0 2,135,801.0 2,328.00 36.0 25 165 6,510,941.0 2,136,720.0 2,336.00 26 166 6,510,487.0 2,135,826.0 2,328.00 27 167 6,510,948.0 2,135,826.0 2,328.00 28 168 6,510,948.0 2,135,814.0 2,332.00 36.0 29 169 6,510,963.0 2,134,301.0 2,324.00 30 170 6,510,962.0 2,135,077.0 2,326.00 36.0 31 171 6,510,954.5 2,134,933.8 2,326.00 36.0 33 173 6,510,953.5 2,134,663.0 2,326.00 36.0 35 175 6,510,954.0 2,134,341.2 2,324.00 36.0 37 177 6,510,239.0 2,134,342.0 2,326.00 36.0 37 177 6,510,239.0 2,134,342.0 2,326.00 </td>	22 162 6,509,933.0 2,136,673.0 2,328.00 23 163 6,509,968.0 2,135,807.0 2,330.00 24 164 6,509,558.0 2,135,801.0 2,328.00 36.0 25 165 6,510,941.0 2,136,720.0 2,336.00 26 166 6,510,487.0 2,135,826.0 2,328.00 27 167 6,510,948.0 2,135,826.0 2,328.00 28 168 6,510,948.0 2,135,814.0 2,332.00 36.0 29 169 6,510,963.0 2,134,301.0 2,324.00 30 170 6,510,962.0 2,135,077.0 2,326.00 36.0 31 171 6,510,954.5 2,134,933.8 2,326.00 36.0 33 173 6,510,953.5 2,134,663.0 2,326.00 36.0 35 175 6,510,954.0 2,134,341.2 2,324.00 36.0 37 177 6,510,239.0 2,134,342.0 2,326.00 36.0 37 177 6,510,239.0 2,134,342.0 2,326.00

INPUT: TRAFFIC FOR LAeq1h Volumes	T: TRAFFIC FOR LAeq1h Volumes								it Noise	Barrier		
LSA Associates, Inc.				16 Son	tember 2	2010						
P. Ault				TNM 2		2010						
r. Auit				I INIVI Z	.J 							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Kern COG	Retrofit No	oise Barr	ier	1							
RUN:	Calibration	1										
Roadway	Points											
Name	Name	No.	Segmen	it								
			Autos		MTruck	S	HTrucks	;	Buses	,	Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
SR14 (SB)	0	1	390	65	54	65	108	55	0	0	0	0
	1	2	390	65	54	65	108	55	0	0	0	0
	2	3	390	65	54	65	108	55	0	0	0	0
	3	4	390							0		
	4	5	390			65	108	55		0		_
	5	6						55				_
	6	7										
	7	8										
	8	9						55				
	9	10										
	10	11										
	11	12										
	12	13										
	13	14										
	14	15										
	15	16								_		_
	16	17										
	18	18 19									_	_
	19	20						55				
	20	21										
	21	21						55 55				
	22	23										
	44	23	390	65	54	05	108	55	0	0	0	_' 0

INPUT: TRAFFIC FOR LAeq1h Volumes						K	ern COG	Retrofi	it Noise E	Barrier		
-	23	24	390	65	54	65	108	55	0	0	0	0
	24	25	390	65	54	65	108	55	0	0	0	0
	25	26	390	65	54	65	108	55	0	0	0	0
	26	27	390	65	54	65	108	55	0	0	0	C
	27	28	390	65	54	65	108	55	0	0	0	0
	28	29	390	65	54	65	108	55	0	0	0	0
	29	30	390	65	54	65	108	55	0	0	0	C
	30	31										
SR14 (NB)	31	32	366	65	30	65	84	55	0	0	6	65
	32	33	366	65	30	65	84	55	0	0	6	65
	33	34	366	65	30	65	84	55	0	0	6	65
	34	35	366	65	30	65	84	55	0	0	6	65
	35	36	366	65	30	65	84	55	0	0	6	65
	36	37	366	65	30	65	84	55	0	0	6	65
	37	38	366	65	30	65	84	55	0	0	6	65
	38	39	366	65	30	65	84	55	0	0	6	65
	39	40	366	65	30	65	84	55	0	0	6	65
	40	41	366	65	30	65	84	55	0	0	6	65
	41	42	366	65	30	65	84	55	0	0	6	65
	42	43	366	65	30	65	84	55	0	0	6	65
	43	44	366	65	30	65	84	55	0	0	6	65
	44	45	366	65	30	65	84	55	0	0	6	65
	45	46	366	65	30	65	84	55	0	0	6	65
	46	47	366	65	30	65	84	55	0	0	6	65
	47	48	366	65	30	65	84	55	0	0	6	65
	48	49	366	65	30	65	84	55	0	0	6	65
	49	50	366	65	30	65	84	55	0	0	6	65
	50	51	366	65	30	65	84	55	0	0	6	65
	51	52	366	65	30	65	84	55	0	0	6	65
	52	53	366	65	30	65	84	55	0	0	6	65
	53	54	366	65	30	65	84	55	0	0	6	65
	54	55	366	65	30		84	55		0	6	
	55	56	366	65	30	65	84	55	0	0	6	
	56	57	366	65	30	65	84	55	0	0	6	65
	57	58										
On ramp fr Rosamond Blvd (NB)	0	116	0	0	0	0	0	0	0	0	0	C

INPUT: TRAFFIC FOR LAeq1h Volume	S					Kern	COG R	etrofit	Noise E	Barrier		
	1	117	0	0	0	0	0	0	0	0	0	0
	2	118	0	0	0	0	0	0	0	0	0	0
	3	119	0	0	0	0	0	0	0	0	0	0
	4	120	0	0	0	0	0	0	0	0	0	0
	5	121	0	0	0	0	0	0	0	0	0	0
	6	122	0	0	0	0	0	0	0	0	0	0
	7	123										
Off ramp to Rosamond Blvd (NB)	8	124	0	0	0	0	0	0	0	0	0	0
	9	125	0	0	0	0	0	0	0	0	0	0
	10	126	0	0	0	0	0	0	0	0	0	0
	11	127	0	0	0	0	0	0	0	0	0	0
	12	128	0	0	0	0	0	0	0	0	0	0
	13	129	0	0	0	0	0	0	0	0	0	0
	14	130										-
On ramp fr W Rosamond Blvd (SB)	15	131	0	0	0	0	0	0	0	0	0	0
	16	132	0	0	0	0	0	0	0	0	0	0
	17	133	0	0	0	0	0	0	0	0	0	0
	18	134	0	0	0	0	0	0	0	0	0	0
	19	135	0	0	0	0	0	0	0	0	0	0
	20	136	0	0	0	0	0	0	0	0	0	0
	21	137	0	0	0	0	0	0	0	0	0	0
	22	138	0	0	0	0	0	0	0	0	0	0
	23	139										
Hillcrest Ave	0	140	0	0	0	0	0	0	0	0	0	0
	1	141										
Alexander Ave	2	142	0	0	0	0	0	0	0	0	0	0
	3	143										
Haven St	4	144	0	0	0	0	0	0	0	0	0	0
	5	145										
Rosewood Ave to Milstead	6	146	0	0	0	0	0	0	0	0	0	0
	7	147	0	0	0	0	0	0	0	0	0	0
	8	148	0	0	0	0	0	0	0	0		0
	9	149										
Rosamond Blvd WB	10	150	0	0	0	0	0	0	0	0	0	0
	11	151	0	0	0	0	0	0	0	0	0	0
	12	152	0	0	0	0	0	0	0	0		0

INPUT: TRAFFIC FOR LAeq1h V	olumes		Kern	COG Re	etrofit	Noise E	Barrier					
•	13	153										
Rosamond Blvd EB	14	154	0	0	0	0	0	0	0	0	0	C
	15	155	0	0	0	0	0	0	0	0	0	C
	16	156	0	0	0	0	0	0	0	0	0	C
	17	157	0	0	0	0	0	0	0	0	0	C
	18	158	0	0	0	0	0	0	0	0	0	C
	19	159										
Laurel St to Poplar St	20	160	0	0	0	0	0	0	0	0	0	C
	21	161	0	0	0	0	0	0	0	0	0	C
	22	162	0	0	0	0	0	0	0	0	0	C
	23	163	0	0	0	0	0	0	0	0	0	C
	24	164										
C st to Poplar St	25	165	0	0	0	0	0	0	0	0	0	C
	26	166	0	0	0	0	0	0	0	0	0	C
	27	167	0	0	0	0	0	0	0	0	0	C
	28	168										
W B St	29	169	0	0	0	0	0	0	0	0	0	C
	30	170										
Oak St	31	171	0	0	0	0	0	0	0	0	0	C
	32	172										
Elm St	33	173	0	0	0	0	0	0	0	0	0	C
	34	174										
Orange St	35	175	0	0	0	0	0	0	0	0	0	C
	36	176										
Granite St	37	177	0	0	0	0	0	0	0	0	0	C
	38	178										

INPUT: RECEIVERS								Kern CO	G Retrofit	Noise Barr	ier
LSA Associates, Inc.						16 Septen	nber 2010				
P. Ault						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Kern (COG R	etrofit Noise E	Barrier							
RUN:	Calibr	ation 1									
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criter	ria	Active
			X	Υ	Z	above	Existing	Impact C	riteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'I	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
M1	38	3 1	6,510,394.0	2,138,865.0	2,344.00	4.92	0.00	6	6 12.	.0 5	.0 Y

	ï								110			1							
LSA Associates, Inc.					16 Sept	ember 2	2010												
P. Ault					TNM 2.	5													
INPUT: BARRIERS																			
PROJECT/CONTRACT:	Kern	COG Ret	rofit Noi	ise Barr	ier														
RUN:	Calibi	ration 1																	
Barrier									Points										
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segm	ent			
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			X	Υ	Z	at	Seg H	t Perti	urbs	On	Importan
				Unit	Unit	Width		Unit						Point	Incre-	#Up	#Dn	Struct?	Reflec-
				Area	Vol.			Length							ment				tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft				
Barrier1	W	0.00	99.99	0.00)			0.00	0		1 6,510,312.	2,136,173.0	2,332.00				0	1	
									1			0 2,136,181.0				_	-		
									2			0 2,136,233.0	-					1	
									3			0 2,136,236.0				0	0	4	
									4			0 2,136,186.0					<u> </u>		
Barrier2	W	0.00	99.99	0.00)			0.00	5			0 2,136,280.0						1	
									6			0 2,136,280.0	,					1	
									8			0 2,136,323.0						1	
									9	1		0 2,136,338.0 0 2,136,291.0				0			-
Barrier3	W	0.00	99.99	0.00	1			0.00	10	1		0 2,136,291.0				0	0	 	-
Dameio	VV	0.00	33.33	0.00	,			0.00	11	-		0 2,136,357.0							-
									12	1		0 2,136,456.0						1	+
									13	1		0 2,136,456.0							1
									14			2,136,368.0				-	-		+
			1		1	1	1		17	'	0,010,043.	2,100,000.0	2,002.00	, 15.00	1				

LSA Associates, Inc.					16 September	2010
P. Ault					TNM 2.5	
INPUT: BUILDING ROWS						
PROJECT/CONTRACT:	Kern COG I	Retrofit Nois	e Barrie	er		
RUN:	Calibration	1				
Building Row			Points			
Name	Average	Building	No.	Coordinates (ground)	
	Height	Percent		X	Y	Z
	ft	%		ft	ft	ft
Building1	15.00	80	1	6,510,460.0	2,139,539.0	2,358.00
			2	6,510,454.0	2,138,597.0	2,351.00
Building2	15.00	80	3	6,510,616.0	2,139,543.0	2,360.00
			4	6,510,615.0	2,138,604.0	2,352.00
Building3	15.00	80	5	6,510,381.0	2,138,476.0	2,350.00
			6	6,510,382.0	2,138,358.0	2,350.00
Building4	15.00	80	7	6,510,628.0	2,138,359.0	2,350.00
			8	6,510,627.0	2,138,486.0	2,350.00
Building5	15.00	80	9	6,510,529.0	2,138,235.0	2,348.00
			10	6,510,516.0	2,137,460.0	2,342.00
Building7	15.00	80	13	6,509,796.0	2,136,616.0	2,330.00
			14	6,509,886.0	2,136,614.0	2,330.00
Building8	15.00	80	15	6,509,908.0	2,136,506.0	2,334.00
			16	6,509,910.0	2,135,949.0	2,330.00
Building9	15.00	80	17	6,509,940.0	2,135,893.0	2,330.00
			18	6,509,607.0	2,135,888.0	2,328.00
Building10	15.00	80	19	6,509,934.0	2,135,729.0	2,328.00
			20	6,509,576.0	2,135,723.0	
Building11	15.00	80	21	6,509,635.0		
			22	6,509,632.0	2,136,678.0	
Building12	15.00	80	23	6,510,605.0	2,136,671.0	
			24	6,510,527.0	2,136,578.0	2,336.00
			41	6,510,535.0		2,332.00
			42	6,510,581.0	2,136,293.0	2,332.00

INPUT: BUILDING ROWS

						• • • • • • • • • • • • • • • • •
Building13	15.00	80	25	6,510,270.0	2,135,716.0	2,328.00
			26	6,510,274.0	2,135,665.0	2,328.00
			43	6,510,442.0	2,135,670.0	2,326.00
Building14	15.00	80	27	6,510,491.0	2,135,758.0	2,326.00
			28	6,510,490.0	2,135,656.0	2,326.00
			44	6,510,610.0	2,135,656.0	2,328.00
			45	6,510,603.0	2,135,765.0	2,328.00
Building15	15.00	80	29	6,510,539.0	2,135,982.0	2,330.00
			30	6,510,535.0	2,135,853.0	2,330.00
			46	6,510,635.0	2,135,852.0	2,330.00
			47	6,510,631.0	2,135,969.0	2,330.00
Building16	15.00	80	31	6,510,266.0	2,135,001.0	2,326.00
			32	6,510,673.0	2,135,009.0	2,326.00
Building17	15.00	80	33	6,510,265.0	2,134,846.0	2,326.00
			34	6,510,679.0	2,134,845.0	2,326.00
Building18	15.00	80	37	6,510,271.0	2,134,718.0	2,326.00
			38	6,510,673.0	2,134,721.0	2,326.00
Building19	15.00	80	39	6,510,269.0	2,134,555.0	2,326.00
			40	6,510,682.0	2,134,572.0	2,326.00
Building20	15.00	20	48	6,510,270.0	2,134,421.0	2,326.00
			49	6,510,684.0	2,134,430.0	2,328.00
Building21	15.00	20	50	6,510,264.0	2,134,222.0	2,326.00
			51	6,510,685.0	2,134,231.0	2,326.00

LSA Associates, Inc.								16 Septen	nber 2010					
P. Ault								TNM 2.5						
								Calculate	d with TN	M 2.5				
RESULTS: SOUND LEVELS														
PROJECT/CONTRACT:		Kern C	OG Retrofit	t Noise Barri	er									
RUN:		Calibra	tion 2											
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement typ	e shall be use	d unle	ss	
									a State h	ighway agenc	y substantiat	es the (ıse	
ATMOSPHERICS:		97 deg	F, 12% RH	ĺ					of a diffe	rent type with	approval of F	HWA.		
Receiver														
Name	No.	#DUs	Existing	No Barrier						With Barrier	•			
			LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Reduc	ction		
				Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcula	ated
								Sub'l Inc					minus	
													Goal	
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB	
M2	38	3 1	0.0	56.3	3	66	56.3	12		56.3	3 0.0)	5	- 5.
Dwelling Units		# DUs	Noise Re	duction										
			Min	Avg	Max									
			dB	dB	dB									
All Selected		1	0.0	0.0)	0.0								
All Impacted		0	0.0	0.0)	0.0								
All that meet NR Goal		0	0.0	0.0)	0.0								

14

15

16

17

18

19

20

21

22

23

24

NPUT: ROADWAYS							Kern	COG Retrofit	Noise Barr	ier	
LSA Associates, Inc.					16 Septembe	er 2010					
P. Ault					TNM 2.5						
INPUT: ROADWAYS							Average i	pavement typ	e shall be ı	used unles	S
PROJECT/CONTRACT:	Kern CO	G Retrofit	Noise Ba	rrier				ghway agend			
RUN:	Calibratio	on 2						ent type with			
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	trol		Segment	
				X	Υ	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct
									Affected		
	ft			ft	ft	ft		mph	%		
SR14 (SB)	44.0	0	1	6,510,367.0	2,139,960.0	2,386.00)			Average	
		1	2	6,510,329.0	2,139,740.0	2,378.00)			Average	
		2	3	6,510,307.0		1)			Average	
		3	4	-,,		· ·				Average	
		4	5		2,139,071.0					Average	
		5	6	-,-:-,		· ·				Average	
		6	7		2,138,642.0					Average	
		7	8	-,,						Average	
		8	9		2,138,130.0					Average	
		9	10		2,137,895.0					Average	
		10	11	-,, -		· ·				Average	
		11	12	-,,						Average	
		12	13		2,137,182.0		_			Average	
		13	14	6,510,210.0	2,136,893.0	2,330.00)			Average	

15 6,510,207.0 2,136,663.0 2,330.00

16 6,510,199.0 2,136,435.0 2,330.00

17 6,510,191.0 2,136,216.0 2,330.00

20 6,510,168.0 2,135,590.0 2,328.00

21 6,510,160.0 2,135,381.0 2,328.00

23 6,510,151.0 2,135,045.0 2,326.00

25 6,510,136.0 2,134,616.0 2,326.00

2,134,835.0

2,328.00

2,328.00

2,327.00

2,326.00

18 6,510,184.0 2,136,048.0

19 6,510,177.0 2,135,816.0

22 6,510,154.0 2,135,168.0

6,510,141.0

Average

INI	DI.	JT:	D	\sim	ΛI	\neg	۸ı	A \	10
IIN	ru	JI:	R	U	м	וט	VV.	A I	. 3

INFOI. ROADWAIS					N	tern COG Netront Noise Barrier
		25 26	6,510,127.0	2,134,401.0	2,326.00	Average
		26 27	6,510,123.0	2,134,291.0	2,326.00	Average
		27 28	6,510,125.0	2,134,069.0	2,326.00	Average
		28 29	6,510,125.0	2,133,933.0	2,326.00	Average
		29 30	6,510,141.0	2,133,650.0	2,324.00	Average
		30 31	6,510,151.0	2,133,443.0	2,324.00	
SR14 (NB)	44.0	31 32	6,510,027.0	2,133,442.0	2,324.00	Average
		32 33	6,510,009.0	2,134,403.0	2,326.00	Average
		33 34	6,510,015.0	2,134,613.0	2,326.00	Average
		34 35	6,510,023.0	2,134,836.0	2,326.00	Average
		35 36	6,510,035.0	2,135,049.0	2,326.00	Average
		36 37	6,510,038.0	2,135,170.0	2,327.00	Average
		37 38	6,510,043.0	2,135,383.0	2,328.00	Average
		38 39	6,510,048.0	2,135,591.0	2,328.00	Average
		39 40	6,510,059.0	2,135,818.0	2,328.00	Average
		40 41	6,510,066.0	2,136,052.0	2,328.00	Average
		41 42	6,510,073.0	2,136,218.0	2,330.00	Average
		42 43		2,136,439.0		Average
		43 44		2,136,664.0		Average
		44 45	6,510,097.0	2,136,895.0	2,330.00	Average
		45 46	6,510,108.0	2,137,185.0	2,332.00	Average
		46 47	6,510,117.0	2,137,421.0	2,338.00	Average
		47 48	6,510,124.0	2,137,659.0	2,338.00	Average
		48 49	6,510,132.0	2,137,896.0	2,338.00	Average
		49 50				Average
		50 51	6,510,152.0	2,138,386.0	2,344.00	Average
		51 52	6,510,161.0	2,138,635.0	2,348.00	Average
		52 53	6,510,170.0	2,138,884.0	2,352.00	Average
		53 54	6,510,177.0	2,139,077.0	2,355.00	Average
		54 55	6,510,182.0	2,139,317.0	2,362.00	Average
		55 56	6,510,191.0	2,139,540.0	2,370.00	Average
		56 57	6,510,212.0	2,139,750.0	2,380.00	Average
		57 58		2,139,982.0		
On ramp fr Rosamond Blvd (NB)	20.0	0 116	6,511,587.0	2,136,997.0		Average
				2,137,012.0		Average
				2,137,240.0		Average
		3 119	6,510,292.0	2,137,420.0	2,340.00	Average
				2,137,660.0		Average
				2,137,894.0		Average

IN OI NOADWAIO							 OO IXOLIOIIL I	toloc Baili	O1	
		6	122	6,510,278.0 2,13	8,130.0	2,340.00			Average	
		7	123	6,510,269.0 2,13	8,379.0	2,344.00				
Off ramp to Rosamond Blvd (NB)	36.0	8	124	6,510,178.0 2,13	5,818.2	2,328.00			Average	
		9	125	6,510,214.5 2,13	6,047.2	2,328.00			Average	
		10	126	6,510,235.0 2,13	6,213.0	2,330.00			Average	
		11	127		6,436.0	2,330.00			Average	
		12	128		6,662.0	2,336.00			Average	
		13	129	6,510,601.0 2,13	6,903.0	2,344.00			Average	
		14	130		6,959.5	2,340.00				
On ramp fr W Rosamond Blvd (SB)	36.0	15	131	6,509,509.5 2,13	6,925.0	2,338.00			Average	
		16	132	6,509,930.0 2,13	6,900.0	2,350.00			Average	
		17	133	6,510,013.0 2,13	6,666.0	2,340.00			Average	
		18	134		6,436.0	2,335.00			Average	
		19	135		6,216.0	2,333.00			Average	
		20	136	6,510,041.0 2,13	6,051.0	2,330.00			Average	
		21	137	6,510,041.0 2,13	5,816.0	2,330.00			Average	
		22	138	6,510,036.0 2,13	5,592.0	2,328.00			Average	
		23	139	6,510,043.0 2,13	5,383.2	2,328.00				
Hillcrest Ave	36.0	0	140	6,510,885.0 2,13	9,600.0	2,364.00			Average	
		1	141	6,510,383.0 2,13	9,584.0	2,360.00				
Alexander Ave	36.0	2	142	6,510,886.0 2,13	8,554.0	2,354.00			Average	
		3	143	6,510,375.0 2,13	8,551.0	2,347.00				
Haven St	36.0	4	144	6,510,539.0 2,13	9,566.0	2,360.00			Average	
		5	145	6,510,540.0 2,13	8,564.0	2,352.00				
Rosewood Ave to Milstead	36.0	6	146		8,289.0	2,348.00			Average	
		7	147		8,292.0	2,352.00			Average	
		8	148		7,430.0	2,340.00			Average	
		9	149		7,425.0	2,341.00				
Rosamond Blvd WB	36.0	10	150		6,997.0	2,340.00			Average	
		11	151	6,510,265.0 2,13	6,967.0	2,352.00			Average	Υ
		12	152	6,510,032.0 2,13	6,964.0	2,351.00			Average	
		13	153	6,509,607.0 2,13	6,961.0	2,341.00				
Rosamond Blvd EB	36.0	14	154	6,509,509.5 2,13	6,925.0	2,338.00			Average	
		15	155	6,510,032.0 2,13	6,938.0	2,351.00			Average	Υ
		16	156	6,510,266.0 2,13	6,939.0	2,352.00			Average	
		17	157	6,510,489.0 2,13	6,938.0	2,349.00			Average	
		18	158	6,510,494.0 2,13	6,938.0	2,344.00			Average	
		19	159	6,511,478.0 2,13	6,960.0	2,340.00				
Laurel St to Poplar St	36.0	20	160	6,509,550.0 2,13	6,808.0	2,332.00			Average	
			-	· · · · · · · · · · · · · · · · · · ·						

INPUT: ROADWAYS

		21	161 6,509,	782.0 2,136,799.0	2,330.00	Average	
		22	162 6,509,	933.0 2,136,673.0	2,328.00	Average	
		23	163 6,509,	968.0 2,135,807.0	2,330.00	Average	
		24	164 6,509,	558.0 2,135,801.0	2,328.00		
C st to Poplar St	36.0	25	165 6,510,	941.0 2,136,720.0	2,336.00	Average	
		26	166 6,510,	487.0 2,136,712.0	2,336.00	Average	
		27	167 6,510,	470.0 2,135,826.0	2,328.00	Average	
		28	168 6,510,	948.0 2,135,814.0	2,332.00		
W B St	36.0	29	169 6,510,	963.0 2,134,301.0	2,324.00	Average	
		30	170 6,510,	962.0 2,135,077.0	2,326.00		
Oak St	36.0	31	171 6,510,	954.5 2,134,933.8	2,326.00	Average	
		32	172 6,510,	229.0 2,134,920.0	2,326.00		
Elm St	36.0	33	173 6,510,	953.5 2,134,663.0	2,326.00	Average	
		34	174 6,510,	228.0 2,134,644.0	2,326.00		
Orange St	36.0	35	175 6,510,	954.0 2,134,341.2	2,324.00	Average	
		36	176 6,510,	239.0 2,134,322.0	2,326.00		
Granite St	36.0	37	177 6,510,	216.0 2,135,058.0	2,326.00	Average	
		38	178 6,510,	223.0 2,134,156.0	2,326.00		

INPUT: TRAFFIC FOR LAeq1h Volumes						K	ern COG	Retrof	it Noise	Barrier		
I SA Accesiates line				16 600		2040						
LSA Associates, Inc.					tember 2	2010						
P. Ault				TNM 2	.5 							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Kern COG	Retrofit No	oise Barr	ier								
RUN:	Calibration	2										
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTruck	S	HTrucks	3	Buses	3	Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
SR14 (SB)	0	1	822	65	36	65	48	55	0	0	6	65
	1	2	822	65	36	65	48	55	0	0	6	65
	2	3	822	65	36	65	48	55	0	0	6	65
	3	4	822	65	36	65	48	55	0	0	6	65
	4	5	822			65	48			0	6	65
	5	6										
	6	7				65	48			0		
	7	8										
	8	9										
	9	10										
	10	11										
	11	12										
	12	13										
	13	14										
	14	15										
	15	16										
	16	17										
	17	18										
	18	19										
	19	20									_	
	20	21										
	21	22										
	22	23	822	65	36	65	48	55	0	0	6	65

INPUT: TRAFFIC FOR LAeq1h Volur	nes					K	ern COG	Retrofi	it Noise E	Barrier		
-	23	24	822	65	36	65	48	55	0	0	6	65
	24	25	822	65	36	65	48	55	0	0	6	65
	25	26	822	65	36	65	48	55	0	0	6	65
	26	27	822	65	36	65	48	55	0	0	6	65
	27	28	822	65	36	65	48	55	0	0	6	65
	28	29	822	65	36	65	48	55	0	0	6	65
	29	30	822	65	36	65	48	55	0	0	6	65
	30	31										
SR14 (NB)	31	32	444	65	54	65	84	55	0	0	6	65
	32	33	444	65	54	65	84	55	0	0	6	65
	33	34	444	65	54	65	84	55	0	0	6	65
	34	35	444	65	54	65	84	55	0	0	6	65
	35	36	444	65	54	65	84	55	0	0	6	65
	36	37	444	65	54	65	84	55	0	0	6	65
	37	38	444	65	54	65	84	55	0	0	6	65
	38	39	444	65	54	65	84	55	0	0	6	65
	39	40	444	65	54	65	84	55	0	0	6	65
	40	41	444	65	54	65	84	55	0	0	6	65
	41	42	444	65	54	65	84	55	0	0	6	65
	42	43	444	65	54	65	84	55	0	0	6	65
	43	44	444	65	54	65	84	55	0	0	6	65
	44	45	444	65	54	65	84	55	0	0	6	65
	45	46	444	65	54	65	84	55	0	0	6	65
	46	47	444	65	54	65	84	55	0	0	6	65
	47	48	444	65	54	65	84	55	0	0	6	65
	48	49	444	65	54	65	84	55	0	0	6	65
	49	50	444	65	54	65	84	55	0	0	6	65
	50	51	444	65	54	65	84	55	0	0	6	65
	51	52	444	65	54	65	84	55	0	0	6	65
	52	53	444	65	54	65	84	55	0	0	6	65
	53	54	444	65	54	65	84	55	0	0	6	65
	54	55	444	65	54	65	84	55	0	0	6	65
	55	56	444	65	54	65	84	55	0	0	6	65
	56	57	444	65	54	65	84	55	0	0	6	65
	57	58										
On ramp fr Rosamond Blvd (NB)	0	116	0	0	0	0	0	0	0	0	0	0

INPUT: TRAFFIC FOR LAeq1h Volume	S					Kern	COG R	etrofit	Noise E	Barrier		
	1	117	0	0	0	0	0	0	0	0	0	0
	2	118	0	0	0	0	0	0	0	0	0	0
	3	119	0	0	0	0	0	0	0	0	0	0
	4	120	0	0	0	0	0	0	0	0	0	0
	5	121	0	0	0	0	0	0	0	0	0	0
	6	122	0	0	0	0	0	0	0	0	0	0
	7	123										
Off ramp to Rosamond Blvd (NB)	8	124	0	0	0	0	0	0	0	0	0	0
	9	125	0	0	0	0	0	0	0	0	0	0
	10	126	0	0	0	0	0	0	0	0	0	0
	11	127	0	0	0	0	0	0	0	0	0	0
	12	128	0	0	0	0	0	0	0	0	0	0
	13	129	0	0	0	0	0	0	0	0	0	0
	14	130										
On ramp fr W Rosamond Blvd (SB)	15	131	0	0	0	0	0	0	0	0	0	0
	16	132	0	0	0	0	0	0	0	0	0	0
	17	133	0	0	0	0	0	0	0	0	0	0
	18	134	0	0	0	0	0	0	0	0	0	0
	19	135	0	0	0	0	0	0	0	0	0	0
	20	136	0	0	0	0	0	0	0	0	0	0
	21	137	0	0	0	0	0	0	0	0	0	0
	22	138	0	0	0	0	0	0	0	0	0	0
	23	139										
Hillcrest Ave	0	140	0	0	0	0	0	0	0	0	0	0
	1	141										
Alexander Ave	2	142	0	0	0	0	0	0	0	0	0	0
	3	143										
Haven St	4	144	0	0	0	0	0	0	0	0	0	0
	5	145										
Rosewood Ave to Milstead	6	146	0	0	0	0	0	0	0	0	0	0
	7	147	0	0	0	0	0	0	0	0	0	0
	8	148	0	0	0	0	0	0	0	0		0
	9	149										
Rosamond Blvd WB	10	150	0	0	0	0	0	0	0	0	0	0
	11	151	0	0	0	0	0	0	0	0	0	0
	12	152	0	0	0	0	0	0	0			0

INPUT: TRAFFIC FOR LAeq1h \	/olumes					Kern	COG R	etrofit	Noise Ba	rrier		
	13	153										
Rosamond Blvd EB	14	154	0	0	0	0	0	0	0	0	0	0
	15	155	0	0	0	0	0	0	0	0	0	0
	16	156	0	0	0	0	0	0	0	0	0	0
	17	157	0	0	0	0	0	0	0	0	0	0
	18	158	0	0	0	0	0	0	0	0	0	0
	19	159										
Laurel St to Poplar St	20	160	0	0	0	0	0	0	0	0	0	0
	21	161	0	0	0	0	0	0	0	0	0	0
	22	162	0	0	0	0	0	0	0	0	0	0
	23	163	0	0	0	0	0	0	0	0	0	0
	24	164										
C st to Poplar St	25	165	0	0	0	0	0	0	0	0	0	0
	26	166	0	0	0	0	0	0	0	0	0	0
	27	167	0	0	0	0	0	0	0	0	0	0
	28	168										
W B St	29	169	0	0	0	0	0	0	0	0	0	0
	30	170										
Oak St	31	171	0	0	0	0	0	0	0	0	0	0
	32	172										
Elm St	33	173	0	0	0	0	0	0	0	0	0	0
	34	174										
Orange St	35	175	0	0	0	0	0	0	0	0	0	0
	36	176										
Granite St	37	177	0	0	0	0	0	0	0	0	0	0
	38	178										

INPUT: RECEIVERS								Kern CO	3 Retrofit N	Noise Barri	er
LSA Associates, Inc.						16 Septen	nber 2010				
P. Ault						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Kern	COG R	etrofit Noise E	Barrier							
RUN:	Calibr	ation 2	2	,							
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criter	ia	Active
			X	Υ	Z	above	Existing	Impact C	riteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'I	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
M2	38	1	6,509,807.0	2,136,592.0	2,330.00	4.92	0.00	60	6 12.0	5.	0 Y

LSA Associates, Inc.					16 Sept	ember 2	2010											
P. Ault					TNM 2.5	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	Vorn	COG Ret	rofit No	ico Porri	0.5													
RUN:		ration 2	IOIIL NO	ise baili	eı													
	Calibi	ation 2	+	-														
Barrier									Points									
Name	Туре	Height			If Berm			Add'tnl	Name	No.	Coordinates	. ,		Height	Segment			
		Min	Max			Тор	Run:Rise	+			Х	Υ	Z	at	Seg Ht Pert			Important
				Unit		Width		Unit						Point	Incre- #Up	#Dn	Struct?	Reflec-
				Area	Vol.			Length							ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Barrier1	W	0.00	99.99	0.00				0.00	0	1	6,510,312.0	2,136,173.0	2,332.00	15.00	0.00	C)	
									1	2	6,510,387.0	2,136,181.0	2,332.00	15.00	0.00	C)	
									2	3	6,510,382.0	2,136,233.0	2,332.00	15.00	0.00	C)	
									3	4	6,510,312.0	2,136,236.0	2,332.00	15.00	0.00	C)	
									4	5	6,510,310.0	2,136,186.0	2,332.00	15.00				
Barrier2	W	0.00	99.99	0.00				0.00	5	6	6,510,292.0	2,136,280.0	2,332.00	15.00	0.00	C)	
									6	7	6,510,340.0	2,136,280.0	2,332.00	15.00	0.00	0)	
									7	8	6,510,340.0	2,136,323.0	2,332.00	15.00	0.00	0)	
									8	9	6,510,290.0	2,136,338.0	2,332.00	15.00	0.00	0)	
									9	10	6,510,294.0	2,136,291.0	2,332.00	15.00				
Barrier3	W	0.00	99.99	0.00				0.00	10	11	6,510,352.0	2,136,356.0	2,332.00	15.00	0.00	0)	
									11	12	6,510,412.0	2,136,357.0	2,332.00	15.00	0.00	0)	
									12	13	6,510,413.0	2,136,456.0	2,332.00	15.00	0.00	0)	
									13	14	6,510,352.0	2,136,456.0	2,332.00	15.00	0.00	0)	
									14	15	6,510,349.0	2 136 368 0	2 332 00	15.00				

LSA Associates, Inc.					16 September	2010
P. Ault					TNM 2.5	
INPUT: BUILDING ROWS						
PROJECT/CONTRACT:	Kern COG	Retrofit Nois	⊣ e Barrio	er		
RUN:	Calibration		- - - - - - - - - -			
Building Row			Points			
Name	Average	Building	No.	Coordinates (around)	
	Height	Percent		X	Υ	Z
	ft	%		ft	ft	ft
Building1	15.00	80	1	6,510,460.0	2,139,539.0	2,358.00
			2		2,138,597.0	2,351.00
Building2	15.00	80	3	6,510,616.0	2,139,543.0	2,360.00
			4	6,510,615.0	2,138,604.0	2,352.00
Building3	15.00	80	5	6,510,381.0	2,138,476.0	2,350.00
			6	6,510,382.0	2,138,358.0	2,350.00
Building4	15.00	80	7	6,510,628.0	2,138,359.0	2,350.00
			8	6,510,627.0	2,138,486.0	2,350.00
Building5	15.00	80	9	6,510,529.0	2,138,235.0	2,348.00
			10	6,510,516.0	2,137,460.0	2,342.00
Building7	15.00	80	13	6,509,796.0	2,136,616.0	2,330.00
			14	6,509,886.0	2,136,614.0	2,330.00
Building8	15.00	80	15		2,136,506.0	
			16			
Building9	15.00	80	17			-
			18			
Building10	15.00	80	19			· ·
			20		2,135,723.0	
Building11	15.00	80	21	, ,	2,135,942.0	-
			22	, ,	2,136,678.0	
Building12	15.00	80	23			
			24			
			41			
			42	6,510,581.0	2,136,293.0	2,332.00

INPUT: BUILDING ROWS

INFOT. BUILDING KOWS					IVE	III COG Kelic
Building13	15.00	80	25	6,510,270.0	2,135,716.0	2,328.00
			26	6,510,274.0	2,135,665.0	2,328.00
			43	6,510,442.0	2,135,670.0	2,326.00
Building14	15.00	80	27	6,510,491.0	2,135,758.0	2,326.00
			28	6,510,490.0	2,135,656.0	2,326.00
			44	6,510,610.0	2,135,656.0	2,328.00
			45	6,510,603.0	2,135,765.0	2,328.00
Building15	15.00	80	29	6,510,539.0	2,135,982.0	2,330.00
			30	6,510,535.0	2,135,853.0	2,330.00
			48	6,510,635.0	2,135,852.0	2,330.00
			49	6,510,631.0	2,135,969.0	2,330.00
Building16	15.00	80	31	6,510,266.0	2,135,001.0	2,326.00
			32	6,510,673.0	2,135,009.0	2,326.00
Building17	15.00	80	33	6,510,265.0	2,134,846.0	2,326.00
			34	6,510,679.0	2,134,845.0	2,326.00
Building18	15.00	80	37	6,510,271.0	2,134,718.0	2,326.00
			38	6,510,673.0	2,134,721.0	2,326.00
Building19	15.00	80	39	6,510,269.0	2,134,555.0	2,326.00
			40	6,510,682.0	2,134,572.0	2,326.00
Building20	15.00	20	50	6,510,270.0	2,134,421.0	2,326.00
			51	6,510,684.0	2,134,430.0	2,328.00
Building21	15.00	20	52	6,510,264.0	2,134,222.0	2,326.00
			53	6,510,685.0	2,134,231.0	2,326.00

LSA Associates, Inc.								16 Septer	mber 2010				
P. Ault								TNM 2.5					
								Calculate	d with TNN	/ 1 2.5			
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		Kern C	OG Retrofi	t Noise Barri	er								
RUN:		Calibra	tion 3										
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement typ	e shall be us	ed unles	s
									a State hi	ghway agend	cy substantiat	es the u	se
ATMOSPHERICS:		93 deg	F, 16% RF	ł					of a differ	rent type with	approval of l	FHWA.	
Receiver													
Name	No.	#DUs	Existing	No Barrier						With Barrie	r		
			LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculate
								Sub'l Inc					minus
													Goal
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB
M3	38	3 1	0.0	68.9	9	66	68.9	12	2 Snd Lvl	68.	9 0.0)	5 -
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		1	0.0	0.0)	0.0							
All Impacted		1	0.0	0.0)	0.0)						
All that meet NR Goal		0	0.0	0.0)	0.0)						

011 10712 11711 0				1				To Hourding	Troibe Bair		
LSA Associates, Inc.					16 Septembe	r 2010					
P. Ault					TNM 2.5	2010					
							_				
INPUT: ROADWAYS								pavement typ			
PROJECT/CONTRACT:	Kern CO	3 Retrofit	Noise Ba	arrier				ghway agend	-		
RUN:	Calibratio	on 3					of a differ	ent type with	the appro	val of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	trol		Segment	
				X	Υ	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
SR14 (SB)	44.0	0	1	6,510,367.0	2,139,960.0	2,386.00				Average	
, ,		1	2							Average	
		2	3	6,510,307.0						Average	
		3			1 1					Average	
		4								Average	
		5	6							Average	
		6	7	6,510,282.0	2,138,642.0	2,348.00				Average	
		7	8							Average	
		8	9	6,510,260.0	2,138,130.0	2,340.00				Average	
		9	10	6,510,252.0	2,137,895.0	2,338.00				Average	
		10	11	6,510,244.0	2,137,653.0	2,338.00				Average	
		11	12	6,510,234.0	2,137,419.0	2,338.00				Average	
		12	13	6,510,226.0	2,137,182.0	2,332.00				Average	
		13	14	6,510,210.0	2,136,893.0	2,330.00				Average	
		14	15	6,510,207.0	2,136,663.0	2,330.00				Average	
		15	16	6,510,199.0	2,136,435.0					Average	
		16	17	6,510,191.0	2,136,216.0					Average	
		17	18	-,,						Average	
		18	19	- / / -						Average	
		19	20	-,,						Average	
		20	21							Average	
		21	22	' '						Average	
		22	23							Average	
		23	24							Average	
		24	25	6,510,136.0	2,134,616.0	2,326.00				Average	

IN	DI I.	Г• Б	2	ΔΓ	٦V	VΔ	VS
11/4/	- U	I. F	v	MI	J V	٧M	

INPUT: RUADWATS						Kern COG Retrotit Noise Barrier
		25 26	6,510,127.0	2,134,401.0	2,326.00	Average
		26 27	6,510,123.0	2,134,291.0	2,326.00	Average
		27 28	6,510,125.0	2,134,069.0	2,326.00	Average
		28 29	6,510,125.0	2,133,933.0	2,326.00	Average
		29 30	6,510,141.0	2,133,650.0	2,324.00	Average
		30 31	6,510,151.0	2,133,443.0	2,324.00	
SR14 (NB)	44.0	31 32	6,510,027.0	2,133,442.0	2,324.00	Average
		32 33	6,510,009.0	2,134,403.0	2,326.00	Average
		33 34	6,510,015.0	2,134,613.0	2,326.00	Average
		34 35	6,510,023.0	2,134,836.0	2,326.00	Average
		35 36	6,510,035.0	2,135,049.0	2,326.00	Average
		36 37	6,510,038.0	2,135,170.0	2,327.00	Average
		37 38	6,510,043.0	2,135,383.0	2,328.00	Average
		38 39	6,510,048.0	2,135,591.0	2,328.00	Average
		39 40	6,510,059.0	2,135,818.0	2,328.00	Average
		40 41	6,510,066.0	2,136,052.0	2,328.00	Average
		41 42	6,510,073.0	2,136,218.0	2,330.00	Average
		42 43	6,510,078.0	2,136,439.0	2,330.00	Average
		43 44	6,510,088.0	2,136,664.0	2,330.00	Average
		44 45	6,510,097.0	2,136,895.0	2,330.00	Average
		45 46	6,510,108.0	2,137,185.0	2,332.00	Average
		46 47	6,510,117.0	2,137,421.0	2,338.00	Average
		47 48	6,510,124.0	2,137,659.0	2,338.00	Average
		48 49	6,510,132.0	2,137,896.0	2,338.00	Average
		49 50	6,510,142.0	2,138,137.0	2,340.00	Average
		50 51	6,510,152.0	2,138,386.0	2,344.00	Average
		51 52	6,510,161.0	2,138,635.0	2,348.00	Average
		52 53	6,510,170.0	2,138,884.0	2,352.00	Average
		53 54	6,510,177.0	2,139,077.0	2,355.00	Average
		54 55	6,510,182.0	2,139,317.0	2,362.00	Average
		55 56	6,510,191.0	2,139,540.0	2,370.00	Average
		56 57	6,510,212.0	2,139,750.0	2,380.00	Average
		57 58	6,510,255.0	2,139,982.0	2,388.00	
On ramp fr Rosamond Blvd (NB)	20.0	0 116	6,511,587.0	2,136,997.0	2,340.00	Average
				2,137,012.0		Average
		2 118	6,510,326.0	2,137,240.0	2,341.00	Average
		3 119	6,510,292.0	2,137,420.0	2,340.00	Average
		4 120	6,510,277.0	2,137,660.0	2,338.00	Average
		5 121	6,510,274.0	2,137,894.0	2,338.00	Average

INPUT: ROADWAYS						Kern (COG Retrofit Noise Barrier
		6	122	6,510,278.0	2,138,130.0	2,340.00	Average
		7	123	6,510,269.0	2,138,379.0	2,344.00	
Off ramp to Rosamond Blvd (NB)	36.0	8	124	6,510,178.0	2,135,818.2	2,328.00	Average
		9	125	6,510,214.5	2,136,047.2	2,328.00	Average
		10	126	6,510,235.0	2,136,213.0	2,330.00	Average
		11	127	6,510,287.0	2,136,436.0	2,330.00	Average
		12	128	6,510,385.0	2,136,662.0	2,336.00	Average
		13	129	6,510,601.0	2,136,903.0	2,344.00	Average
		14	130	6,511,474.0	2,136,959.5	2,340.00	
On ramp fr W Rosamond Blvd (SB)	36.0	15	131	6,509,509.5	2,136,925.0	2,338.00	Average
		16	132	6,509,930.0	2,136,900.0	2,350.00	Average
		17	133	6,510,013.0	2,136,666.0	2,340.00	Average
		18	134	6,510,022.0	2,136,436.0	2,335.00	Average
		19	135	6,510,036.0	2,136,216.0	2,333.00	Average
		20	136	6,510,041.0	2,136,051.0	2,330.00	Average
		21	137	6,510,041.0	2,135,816.0	2,330.00	Average
		22	138	6,510,036.0	2,135,592.0	2,328.00	Average
		23	139	6,510,043.0	2,135,383.2	2,328.00	
Hillcrest Ave	36.0	0	140	6,510,885.0	2,139,600.0	2,364.00	Average
		1	141	6,510,383.0	2,139,584.0	2,360.00	
Alexander Ave	36.0	2	142	6,510,886.0	2,138,554.0	2,354.00	Average
		3	143	6,510,375.0	2,138,551.0	2,347.00	
Haven St	36.0	4	144	6,510,539.0	2,139,566.0	2,360.00	Average
		5	145	6,510,540.0	2,138,564.0	2,352.00	
Rosewood Ave to Milstead	36.0	6	146	6,510,382.0	2,138,289.0	2,348.00	Average
		7	147	6,510,599.0	2,138,292.0	2,352.00	Average
		8	148	6,510,601.0	2,137,430.0	2,340.00	Average
		9	149	6,510,405.0	2,137,425.0	2,341.00	
Rosamond Blvd WB	36.0	10	150	6,511,584.0	2,136,997.0	2,340.00	Average
		11	151	6,510,265.0	2,136,967.0	2,352.00	Average Y
		12	152	6,510,032.0	2,136,964.0	2,351.00	Average
		13	153	6,509,607.0	2,136,961.0	2,341.00	
Rosamond Blvd EB	36.0	14	154	6,509,509.5	2,136,925.0	2,338.00	Average
		15	155	6,510,032.0	2,136,938.0	2,351.00	Average Y
		16	156	6,510,266.0	2,136,939.0	2,352.00	Average
		17	157	6,510,489.0	2,136,938.0	2,349.00	Average
		18	158	6,510,494.0	2,136,938.0	2,344.00	Average
		19	159	6,511,478.0	2,136,960.0	2,340.00	
Laurel St to Poplar St	36.0	20	160	6,509,550.0	2,136,808.0	2,332.00	Average

INPUT: ROADWAYS

		21	161	6,509,782.0	2,136,799.0	2,330.00		Average
		22	162	6,509,933.0	2,136,673.0	2,328.00		Average
		23	163	6,509,968.0	2,135,807.0	2,330.00		Average
		24	164	6,509,558.0	2,135,801.0	2,328.00		
C st to Poplar St	36.0	25	165	6,510,941.0	2,136,720.0	2,336.00		Average
		26	166	6,510,487.0	2,136,712.0	2,336.00		Average
		27	167	6,510,470.0	2,135,826.0	2,328.00		Average
		28	168	6,510,948.0	2,135,814.0	2,332.00		
W B St	36.0	29	169	6,510,963.0	2,134,301.0	2,324.00		Average
		30	170	6,510,962.0	2,135,077.0	2,326.00		
Oak St	36.0	31	171	6,510,954.5	2,134,933.8	2,326.00		Average
		32	172	6,510,229.0	2,134,920.0	2,326.00		
Elm St	36.0	33	173	6,510,953.5	2,134,663.0	2,326.00		Average
		34	174	6,510,228.0	2,134,644.0	2,326.00		
Orange St	36.0	35	175	6,510,954.0	2,134,341.2	2,324.00		Average
		36	176	6,510,239.0	2,134,322.0	2,326.00		
Granite St	36.0	37	177	6,510,216.0	2,135,058.0	2,326.00		Average
		38	178	6,510,223.0	2,134,156.0	2,326.00		
		1						

INPUT: TRAFFIC FOR LAeq1h Volumes						K	ern COG	Retrof	it Noise	Barrier		
I SA Associates Inc				16 5	tomber (2010						
LSA Associates, Inc.					tember 2	2010						
P. Ault				TNM 2	.5 							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Kern COG	Retrofit No	oise Barr	ier								
RUN:	Calibration	3										
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTruck	S	HTrucks	;	Buses		Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
SR14 (SB)	0	1	612	65	18	65	72	55	0	0	0	0
	1	2	612	65	18	65	72	55	0	0	0	0
	2	3	612	65	18	65	72			0	0	0
	3	4	612	65	18	65	72	55	0	0	0	0
	4	5	612			65	72	55		0	0	0
	5	6										
	6	7								0		_
	7	8										
	8	9										
	9	10										
	10	11										
	11	12										
	12	13										
	13	14										
	14	15						55				
	15	16						55				_
	16	17										
	17	18										
	18	19										_
	19	20										
	20	21										
	21	22										
	22	23	612	65	18	65	72	55	0	0	0	0

INPUT: TRAFFIC FOR LAeq1h Volum	nes					K	ern COG	Retrof	it Noise E	Barrier		
	23	24	612	65	18	65	72	55	0	0	0	0
	24	25	612	65	18	65	72	55	0	0	0	0
	25	26	612	65	18	65	72	55	0	0	0	0
	26	27	612	65	18	65	72	55	0	0	0	0
	27	28	612	65	18	65	72	55	0	0	0	0
	28	29	612	65	18	65	72	55	0	0	0	0
	29	30	612	65	18	65	72	55	0	0	0	0
	30	31										
SR14 (NB)	31	32	480	65	66	65	78	55	0	0	6	65
	32	33	480	65	66	65	78	55	0	0	6	65
	33	34	480	65	66	65	78	55	0	0	6	65
	34	35	480	65	66	65	78	55	0	0	6	65
	35	36	480	65	66	65	78	55	0	0	6	65
	36	37	480	65	66	65	78	55	0	0	6	65
	37	38	480	65	66	65	78	55	0	0	6	65
	38	39	480	65	66	65	78	55	0	0	6	65
	39	40	480	65	66	65	78	55	0	0	6	65
	40	41	480	65	66	65	78	55	0	0	6	65
	41	42	480	65	66	65	78	55	0	0	6	65
	42	43	480	65	66	65	78	55	0	0	6	65
	43	44	480	65	66	65	78	55	0	0	6	65
	44	45	480	65	66	65	78	55	0	0	6	65
	45	46	480	65	66	65	78	55	0	0	6	65
	46	47	480	65	66	65	78	55	0	0	6	65
	47	48	480	65	66	65	78	55	0	0	6	65
	48	49	480	65	66	65	78	55	0	0	6	65
	49	50	480	65	66	65	78	55	0	0	6	65
	50	51	480	65	66	65	78	55	0	0	6	65
	51	52	480	65	66	65	78	55	0	0	6	65
	52	53	480	65	66	65	78	55	0	0	6	65
	53	54	480	65	66	65	78	55	0	0	6	65
	54	55	480	65	66	65	78	55	0	0	6	65
	55	56	480	65	66	65	78	55	0	0	6	65
	56	57	480	65	66	65	78	55	0	0	6	65
	57	58										
On ramp fr Rosamond Blvd (NB)	0	116	0	0	0	0	0	0	0	0	0	0

INPUT: TRAFFIC FOR LAeq1h Volume	S					Kern	COG R	etrofit	Noise E	Barrier		
•	1	117	0	0	0	0	0	0	0	0	0	0
	2	118	0	0	0	0	0	0	0	0	0	0
	3	119	0	0	0	0	0	0	0	0	0	0
	4	120	0	0	0	0	0	0	0	0	0	0
	5	121	0	0	0	0	0	0	0	0	0	0
	6	122	0	0	0	0	0	0	0	0	0	0
	7	123										
Off ramp to Rosamond Blvd (NB)	8	124	0	0	0	0	0	0	0	0	0	0
	9	125	0	0	0	0	0	0	0	0	0	0
	10	126	0	0	0	0	0	0	0	0	0	0
	11	127	0	0	0	0	0	0	0	0	0	0
	12	128	0	0	0	0	0	0	0	0	0	0
	13	129	0	0	0	0	0	0	0	0	0	0
	14	130										-
On ramp fr W Rosamond Blvd (SB)	15	131	0	0	0	0	0	0	0	0	0	0
	16	132	0	0	0	0	0	0	0	0	0	0
	17	133	0	0	0	0	0	0	0	0	0	0
	18	134	0	0	0	0	0	0	0	0	0	0
	19	135	0	0	0	0	0	0	0	0	0	0
	20	136	0	0	0	0	0	0	0	0	0	0
	21	137	0	0	0	0	0	0	0	0	0	0
	22	138	0	0	0	0	0	0	0	0	0	0
	23	139										
Hillcrest Ave	0	140	0	0	0	0	0	0	0	0	0	0
	1	141										
Alexander Ave	2	142	0	0	0	0	0	0	0	0	0	0
	3	143										
Haven St	4	144	0	0	0	0	0	0	0	0	0	0
	5	145										
Rosewood Ave to Milstead	6	146	0	0	0	0	0	0	0	0	0	0
	7	147	0	0	0	0	0	0	0	0	0	0
	8	148	0	0	0	0	0	0	0	0		0
	9	149										
Rosamond Blvd WB	10	150	0	0	0	0	0	0	0	0	0	0
	11	151	0	0	0	0	0	0	0	0	0	0
	12	152	0	0	0	0	0	0	0	0		0

INPUT: TRAFFIC FOR LAeq1h \	/olumes					Kern	COG R	etrofit	Noise Ba	rrier		
	13	153										
Rosamond Blvd EB	14	154	0	0	0	0	0	0	0	0	0	0
	15	155	0	0	0	0	0	0	0	0	0	0
	16	156	0	0	0	0	0	0	0	0	0	0
	17	157	0	0	0	0	0	0	0	0	0	0
	18	158	0	0	0	0	0	0	0	0	0	0
	19	159										
Laurel St to Poplar St	20	160	0	0	0	0	0	0	0	0	0	0
	21	161	0	0	0	0	0	0	0	0	0	0
	22	162	0	0	0	0	0	0	0	0	0	0
	23	163	0	0	0	0	0	0	0	0	0	0
	24	164										
C st to Poplar St	25	165	0	0	0	0	0	0	0	0	0	0
	26	166	0	0	0	0	0	0	0	0	0	0
	27	167	0	0	0	0	0	0	0	0	0	0
	28	168										
W B St	29	169	0	0	0	0	0	0	0	0	0	0
	30	170										
Oak St	31	171	0	0	0	0	0	0	0	0	0	0
	32	172										
Elm St	33	173	0	0	0	0	0	0	0	0	0	0
	34	174										
Orange St	35	175	0	0	0	0	0	0	0	0	0	0
	36	176										
Granite St	37	177	0	0	0	0	0	0	0	0	0	0
	38	178										

INPUT: RECEIVERS								Kern CO	G Retrofit	Noise Barr	ier
LSA Associates, Inc.						16 Septen	nber 2010				
P. Ault						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Kern	COG R	etrofit Noise E	Barrier							
RUN:	Calibr	ation 3	3	,							
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criter	ria	Active
			X	Υ	Z	above	Existing	Impact C	riteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'I	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
M3	38	1	6,510,254.0	2,134,713.0	2,326.00	4.92	0.00	6	6 12.	.0 5	.0 Y

LSA Associates, Inc.					16 Sept	ember 2	2010											
P. Ault					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	Kern	COG Ret	rofit No	ise Barri	ier													
RUN:	Calib	ration 3																
Barrier									Points									
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segment			
		Min	Max			Тор	Run:Rise	\$ per			X	Υ	Z	at	Seg Ht Peri			Important
				Unit	-	Width		Unit						Point	Incre- #Up	#Dn	Struct?	Reflec-
				Area	Vol.			Length							ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Barrier1	W	0.00	99.99	0.00)			0.00	0	1	6,510,312.0	2,136,173.0	2,332.00	15.00	0.00	0)	
									1	2	6,510,387.0	2,136,181.0	2,332.00	15.00	0.00	0)	
									2	3	6,510,382.0	2,136,233.0	2,332.00	15.00	0.00	0)	
									3	4	1 1	2,136,236.0				0)	
									4	5		2,136,186.0						
Barrier2	W	0.00	99.99	0.00)			0.00		6	6,510,292.0					0		
									6	7		2,136,280.0					-	
									7		6,510,340.0					0	-	
									8		6,510,290.0					0)	
									9		6,510,294.0					1		
Barrier3	W	0.00	99.99	0.00				0.00			6,510,352.0	<u> </u>				0		
									11		6,510,412.0					0		
									12		6,510,413.0					0	-	
									13	14		2,136,456.0				0)	
								1	14	15	6,510,349.0	2,136,368.0	2,332.00	15.00)			

LSA Associates, Inc.					16 September	2010
P. Ault					TNM 2.5	
INPUT: BUILDING ROWS						
PROJECT/CONTRACT:	Kern COG I	Retrofit Nois	e Barrie	er		
RUN:	Calibration	3				
Building Row			Points	<u> </u>		
Name	Average	Building	No.	Coordinates (ground)	
	Height	Percent		X	Υ	Z
	ft	%		ft	ft	ft
Building1	15.00	80	1	6,510,460.0	2,139,539.0	2,358.00
			2	6,510,454.0	2,138,597.0	2,351.00
Building2	15.00	80	3	6,510,616.0	2,139,543.0	2,360.00
			4	6,510,615.0	2,138,604.0	2,352.00
Building3	15.00	80	5	6,510,381.0	2,138,476.0	2,350.00
			6	6,510,382.0	2,138,358.0	2,350.00
Building4	15.00	80	7	6,510,628.0	2,138,359.0	2,350.00
			8	6,510,627.0	2,138,486.0	2,350.00
Building5	15.00	80	9	6,510,529.0	2,138,235.0	2,348.00
			10	6,510,516.0	2,137,460.0	2,342.00
Building7	15.00	80	13	6,509,796.0	2,136,616.0	2,330.00
			14	6,509,886.0	2,136,614.0	2,330.00
Building8	15.00	80	15	6,509,908.0	2,136,506.0	2,334.00
			16	6,509,910.0	2,135,949.0	2,330.00
Building9	15.00	80	17	6,509,940.0	2,135,893.0	2,330.00
			18	6,509,607.0	2,135,888.0	2,328.00
Building10	15.00	80	19	6,509,934.0	2,135,729.0	2,328.00
			20	6,509,576.0	2,135,723.0	2,328.00
Building11	15.00	80	21	6,509,635.0	2,135,942.0	2,328.00
			22	6,509,632.0	2,136,678.0	2,332.00
Building12	15.00	80	23	6,510,605.0	2,136,671.0	2,334.00
			24	6,510,527.0	2,136,578.0	2,336.00
			41	6,510,535.0	2,136,363.0	2,332.00
			42	6,510,581.0	2,136,293.0	2,332.00

INPUT: BUILDING ROWS

INFOT. BUILDING KOWS					1/6	an cog kend
Building13	15.00	80	25	6,510,270.0	2,135,716.0	2,328.00
			26	6,510,274.0	2,135,665.0	2,328.00
			43	6,510,442.0	2,135,670.0	2,326.00
Building14	15.00	80	27	6,510,491.0	2,135,758.0	2,326.00
			28	6,510,490.0	2,135,656.0	2,326.00
			44	6,510,610.0	2,135,656.0	2,328.00
			45	6,510,603.0	2,135,765.0	2,328.00
Building15	15.00	80	29	6,510,539.0	2,135,982.0	2,330.00
			30	6,510,535.0	2,135,853.0	2,330.00
			46	6,510,635.0	2,135,852.0	2,330.00
			47	6,510,631.0	2,135,969.0	2,330.00
Building16	15.00	80	31	6,510,266.0	2,135,001.0	2,326.00
			32	6,510,673.0	2,135,009.0	2,326.00
Building17	15.00	80	33	6,510,265.0	2,134,846.0	2,326.00
			34	6,510,679.0	2,134,845.0	2,326.00
Building18	15.00	80	37	6,510,271.0	2,134,718.0	2,326.00
			38	6,510,673.0	2,134,721.0	2,326.00
Building19	15.00	80	39	6,510,269.0	2,134,555.0	2,326.00
			40	6,510,682.0	2,134,572.0	2,326.00
Building20	15.00	20	48	6,510,270.0	2,134,421.0	2,326.00
			49	6,510,684.0	2,134,430.0	2,328.00
Building21	15.00	20	50	6,510,264.0	2,134,222.0	2,326.00
			51	6,510,685.0	2,134,231.0	2,326.00

APPENDIX C

TRAFFIC NOISE MODEL (TNM) 2.5 PRINTOUTS FOR EXISTING CONDITIONS

APPENDIX D

TRAFFIC NOISE MODEL (TNM) 2.5 PRINTOUTS FOR FUTURE (2035) CONDITIONS

66

66

66

66

66

66

66

66

66

66

66

66

65.9

64.6

61.5

58.2

57.3

57.0

55.7

58.6

59.0

60.6

64.3

59.8

12

12

12

12

12

12

12

12

12

12

12

12

65.9

64.6

61.5

58.2

57.3

57.0

55.7

58.6

59.0

60.6

64.3

59.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

5

5

5

5

5

5

5

5

50

51

52

53

54

55

56

57

58

59

60

61

1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

65.9

64.6

61.5

58.2

57.3

57.0

55.7

58.6

59.0

60.6

64.3

59.8

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

RESULTS: SOUND LEVELS							Kern COG I	Retrofit No	ise Barrier			
R25	62	1	0.0	62.0	66	62.0	12		62.0	0.0	5	-5.0
R26	63	1	0.0	63.8	66	63.8	12		63.8	0.0	5	-5.0
R27	64	1	0.0	68.2	66	68.2	12	Snd Lvl	68.2	0.0	5	-5.0
R28	65	1	0.0	70.5	66	70.5	12	Snd Lvl	70.5	0.0	5	-5.0
R29	66	1	0.0	66.4	66	66.4	12	Snd Lvl	66.4	0.0	5	-5.0
R30	67	1	0.0	61.4	66	61.4	12		61.4	0.0	5	-5.0
R31	68	1	0.0	62.7	66	62.7	12		62.7	0.0	5	-5.0
R32	69	1	0.0	58.5	66	58.5			58.5	0.0	5	-5.0
R33	70		0.0	59.8		59.8			59.8	0.0	5	-5.0
R34	71	1	0.0	58.4	66	58.4	12		58.4	0.0	5	-5.0
R35	72	1	0.0	59.1	66	59.1	12		59.1	0.0	5	-5.0
R36	73	1	0.0	59.3	66	59.3	12		59.3	0.0	5	-5.0
R37	74		0.0	61.5		61.5	12		61.5	0.0	5	-5.0
R38	75	1	0.0	58.7	66	58.7	12		58.7	0.0	5	-5.0
R39	76		0.0	61.1	66	61.1	12		61.1	0.0	5	-5.0
R40	77	1	0.0	62.6	66	62.6	12		62.6	0.0	5	-5.0
R41	78		0.0	61.0	66	61.0			61.0	0.0	5	-5.0
R42	79		0.0	68.0		68.0		Snd Lvl	68.0	0.0	5	-5.0
R43	80	1	0.0	63.6	66	63.6	12		63.6	0.0	5	-5.0
R44	81	1	0.0	70.5	66	70.5	12	Snd Lvl	70.5	0.0	5	-5.0
R45	82	1	0.0	62.3	66	62.3	12		62.3	0.0	5	-5.0
R46	83	1	0.0	59.1		59.1	12		59.1	0.0	5	-5.0
R47	84		0.0	70.2		70.2		Snd Lvl	70.2	0.0	5	-5.0
R48	85	1	0.0	58.8	66	58.8	12		58.8	0.0	5	-5.0
R49	86	1	0.0	62.4	66	62.4	12		62.4	0.0	5	-5.0
R50	87	1	0.0	61.9	66	61.9	12		61.9	0.0	5	-5.0
R51	88		0.0	59.2		59.2	12		59.2	0.0	5	-5.0
R52	89	1	0.0	69.7	66	69.7	12	Snd Lvl	69.7	0.0	5	-5.0
R53	90	1	0.0	62.6	66	62.6	12		62.6	0.0	5	-5.0
R54	91	1	0.0	59.2	66	59.2	12		59.2	0.0	5	-5.0
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		54	0.0	0.0	0.0							
All Impacted		18	0.0	0.0	0.0							
All that meet NR Goal		0	0.0	0.0	0.0							

LSA Associates, Inc.					16 Septembe	r 2010					
P. Ault					TNM 2.5	2010					
INPUT: ROADWAYS							Average p	avement typ	e shall be	used unles	S
PROJECT/CONTRACT:	Kern CO	Retrofit	Noise Bar	rier				ghway agend			
RUN:	Future							ent type with	-		
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	trol		Segment	
				X		Z	Control	Speed	Percent	Pvmt	On
						_	Device	Constraint	Vehicles	Туре	Struct?
									Affected	71	
	ft			ft	ft	ft		mph	%		
SR14 (SB)	44.0	0	1	6,510,367.0	2,139,960.0	2,386.00		-		Average	
0.1.1 (02)	11.0	1	2	6,510,329.0		-				Average	
		2	3	6,510,307.0						Average	
		3	4	6,510,301.0						Average	
		4	5	6,510,293.0		-				Average	
		5	6	6,510,288.0		,				Average	
		6	7	6,510,282.0		-				Average	
		7	8	6,510,269.0						Average	
		8	9	6,510,260.0	2,138,130.0	2,340.00)			Average	
		9	10	6,510,252.0	2,137,895.0	2,338.00				Average	
		10	11	6,510,244.0	2,137,653.0	2,338.00				Average	
		11	12	6,510,234.0	2,137,419.0	2,338.00				Average	
		12	13	6,510,226.0	2,137,182.0	2,332.00				Average	
		13	14	6,510,210.0	2,136,893.0	2,330.00)			Average	
		14	15	6,510,207.0	2,136,663.0	2,330.00				Average	
		15	16	6,510,199.0	2,136,435.0	2,330.00				Average	
		16	17	6,510,191.0	2,136,216.0	2,330.00				Average	
		17	18	6,510,184.0	2,136,048.0					Average	
		18	19	6,510,177.0	2,135,816.0	2,328.00				Average	
		19	20	6,510,168.0						Average	
		20	21	6,510,160.0						Average	
		21	22	6,510,154.0		-				Average	
		22	23	6,510,151.0						Average	
		23	24	6,510,141.0						Average	
		24	25	6,510,136.0	2,134,616.0	2,326.00				Average	

ı	П		П	Т	٠.	D	•)A		W	v	۸	١	79	2
ш	41	П.	u	•	-	п		,,	ı	, v	v.	м	ч		3

INFOI. ROADWAIS					I.	Kern COG Ketront Noise Barrier
		25 26	6,510,127.0	2,134,401.0	2,326.00	Average
		26 27	6,510,123.0	2,134,291.0	2,326.00	Average
		27 28	6,510,125.0	2,134,069.0	2,326.00	Average
		28 29	6,510,125.0	2,133,933.0	2,326.00	Average
		29 30	6,510,141.0	2,133,650.0	2,324.00	Average
		30 31	6,510,151.0	2,133,443.0	2,324.00	
SR14 (NB)	44.0	31 32	6,510,027.0	2,133,442.0	2,324.00	Average
		32 33	6,510,009.0	2,134,403.0	2,326.00	Average
		33 34	6,510,015.0	2,134,613.0	2,326.00	Average
		34 35	6,510,023.0	2,134,836.0	2,326.00	Average
		35 36	6,510,035.0	2,135,049.0	2,326.00	Average
		36 37	6,510,038.0	2,135,170.0	2,327.00	Average
		37 38	6,510,043.0	2,135,383.0	2,328.00	Average
		38 39	6,510,048.0	2,135,591.0	2,328.00	Average
		39 40			2,328.00	Average
		40 41	6,510,066.0	2,136,052.0	2,328.00	Average
		41 42		2,136,218.0		Average
		42 43		2,136,439.0		Average
		43 44		2,136,664.0		Average
		44 45	6,510,097.0	2,136,895.0	2,330.00	Average
		45 46	6,510,108.0	2,137,185.0	2,332.00	Average
		46 47	6,510,117.0	2,137,421.0	2,338.00	Average
		47 48	6,510,124.0	2,137,659.0	2,338.00	Average
		48 49	6,510,132.0	2,137,896.0	2,338.00	Average
		49 50	6,510,142.0	2,138,137.0	2,340.00	Average
		50 51	6,510,152.0	2,138,386.0	2,344.00	Average
		51 52	6,510,161.0	2,138,635.0	2,348.00	Average
		52 53	6,510,170.0	2,138,884.0	2,352.00	Average
		53 54	6,510,177.0	2,139,077.0	2,355.00	Average
		54 55	6,510,182.0	2,139,317.0	2,362.00	Average
		55 56	6,510,191.0	2,139,540.0	2,370.00	Average
		56 57	6,510,212.0	2,139,750.0	2,380.00	Average
		57 58		2,139,982.0		
On ramp fr Rosamond Blvd (NB)	20.0			2,136,997.0		Average
• •				2,137,012.0		Average
				2,137,240.0		Average
				2,137,420.0		Average
				2,137,660.0		Average
			6,510,274.0			Average

INFOI. NOADWAIS					IN.	terri COG ivetrorit Noise Barrier
		6 122	6,510,278.0	2,138,130.0	2,340.00	Average
		7 123	6,510,269.0	2,138,379.0	2,344.00	
Off ramp to Rosamond Blvd (NB)	20.0	8 124	6,510,178.0	2,135,818.2	2,328.00	Average
		9 125	6,510,214.5	2,136,047.2	2,328.00	Average
		10 126	6,510,235.0	2,136,213.0	2,330.00	Average
		11 127	6,510,287.0	2,136,436.0	2,330.00	Average
		12 128	6,510,385.0	2,136,662.0	2,336.00	Average
		13 129	6,510,601.0	2,136,903.0	2,344.00	Average
		14 130	6,511,474.0	2,136,959.5	2,340.00	
SB On ramp fr W Rosamond Blvd	20.0	15 131	6,509,510.0	2,136,925.0	2,338.00	Average
		16 132	6,509,930.0	2,136,900.0	2,350.00	Average
		0 183	6,509,979.0	2,136,849.0	2,347.00	Average
		0 184	6,510,002.0	2,136,798.0	2,343.00	Average
		17 185	6,510,013.0	2,136,666.0	2,340.00	Average
		18 186	6,510,022.0	2,136,436.0	2,335.00	Average
		19 187	6,510,036.0	2,136,216.0	2,333.00	Average
		20 188	6,510,041.0	2,136,051.0	2,330.00	Average
		21 189	6,510,041.0	2,135,816.0	2,330.00	Average
		22 190	6,510,036.0	2,135,592.0	2,328.00	Average
		23 191	6,510,043.0	2,135,383.0	2,328.00	
Hillcrest Ave	36.0	0 140	6,510,885.0	2,139,600.0	2,364.00	Average
		1 141	6,510,383.0	2,139,584.0	2,360.00	
Alexander Ave	36.0	2 142	6,510,886.0	2,138,554.0	2,354.00	Average
		3 143	6,510,375.0	2,138,551.0	2,347.00	
Haven St	36.0	4 144		2,139,566.0	2,360.00	Average
		5 145	6,510,540.0	2,138,564.0	2,352.00	
Rosewood Ave to Milstead	36.0	6 146	6,510,382.0	2,138,289.0	2,348.00	Average
		7 147	6,510,599.0	2,138,292.0	2,352.00	Average
		8 148	6,510,601.0	2,137,430.0	2,340.00	Average
		9 149	6,510,405.0	2,137,425.0	2,341.00	
Rosamond Blvd WB	36.0	10 150	6,511,584.0	2,136,997.0	2,340.00	Average
		11 151	6,510,265.0	2,136,967.0	2,352.00	Average Y
		12 152	6,510,032.0	2,136,964.0	2,351.00	Average
		13 153	6,509,607.0	2,136,961.0	2,341.00	
Rosamond Blvd EB	36.0	14 154	6,509,509.5	2,136,925.0	2,338.00	Average
		15 155	6,510,032.0	2,136,938.0	2,351.00	Average Y
		16 156	6,510,266.0	2,136,939.0	2,352.00	Average
		17 157	6,510,489.0	2,136,938.0	2,349.00	Average
		18 158	6,510,494.0	2,136,938.0	2,344.00	Average

INPUT: ROADWAYS

•						 	
		19	159 6,511,	478.0 2,136,960.0	2,340.00		
Laurel St to Poplar St	36.0	20	160 6,509,	550.0 2,136,808.0	2,332.00	Average	
		21	161 6,509,	782.0 2,136,799.0	2,330.00	Average	
		22	162 6,509,	933.0 2,136,673.0	2,328.00	Average	
		23	163 6,509,	968.0 2,135,807.0	2,330.00	Average	
		24	164 6,509,	558.0 2,135,801.0	2,328.00		
C st to Poplar St	36.0	25	165 6,510,	941.0 2,136,720.0	2,336.00	Average	
		26	166 6,510,	487.0 2,136,712.0	2,336.00	Average	
		27	167 6,510,	470.0 2,135,826.0	2,328.00	Average	
		28	168 6,510,	948.0 2,135,814.0	2,332.00		
W B St	36.0	29	169 6,510,	963.0 2,134,301.0	2,324.00	Average	
		30	170 6,510,	962.0 2,135,077.0	2,326.00		
Oak St	36.0	31	171 6,510,	954.5 2,134,933.8	2,326.00	Average	
		32	172 6,510,	229.0 2,134,920.0	2,326.00		
Elm St	36.0	33	173 6,510,	953.5 2,134,663.0	2,326.00	Average	
		34	174 6,510,	228.0 2,134,644.0	2,326.00		
Orange St	36.0	35	175 6,510,	954.0 2,134,341.2	2,324.00	Average	
		36	176 6,510,	239.0 2,134,322.0	2,326.00		
Granite St	36.0	37	177 6,510,	216.0 2,135,058.0	2,326.00	Average	
		38	178 6,510,	223.0 2,134,156.0	2,326.00		
			· · · · · · · · · · · · · · · · · · ·			 · · · · · · · · · · · · · · · · · · ·	

INPUT: TRAFFIC FOR LAeq1h Volumes			,			K	ern COG	Retrof	it Noise	Barrier		
				10.5								
LSA Associates, Inc.				-	tember 2	2010						
P. Ault				TNM 2	.5 ∣							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Kern COG	Retrofit No	oise Barr	ier	1							
RUN:	Future											
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks	S	HTrucks	;	Buses	,	Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
SR14 (SB)	0	1	1386	65	60	65	45	55	0	0	0	0
	1	2	1386	65	60	65	45	55	0	0	0	0
	2	3	1386	65	60	65	45	55	0	0	0	0
	3	4	1386	65	60	65	45	55	0	0	0	0
	4	5	1386	65	60	65	45	55	0	0	0	0
	5	6	1386	65	60	65	45	55	0	0	0	0
	6	7	1386	65	60	65	45	55	0	0	0	0
	7	8								0	0	
	8	9								0	0	0
	9	10						55				
	10	11										
	11	12										
	12	13										
	13	14										
	14	15										_
	15	16										
	16	17										
	17	18										
	18	19										
	19	20								_		
	20	21										
	21	22										
	22	23	1386	65	60	65	45	55	0	0	0	0

INPUT: TRAFFIC FOR LAeq1h Volur	nes					K	ern COG I	Retrofi	t Noise E	Barrier		
•	23	24	1386	65	60	65	45	55	0	0	0	0
	24	25	1386	65	60	65	45	55	0	0	0	0
	25	26	1386	65	60	65	45	55	0	0	0	0
	26	27	1386	65	60	65	45	55	0	0	0	0
	27	28	1386	65	60	65	45	55	0	0	0	0
	28	29	1386	65	60	65	45	55	0	0	0	0
	29	30	1386	65	60	65	45	55	0	0	0	C
	30	31										
SR14 (NB)	31	32	1923	65	83	65	62	55	0	0	0	0
	32	33	1923	65	83	65	62	55	0	0	0	0
	33	34	1923	65	83	65	62	55	0	0	0	0
	34	35	1923	65	83	65	62	55	0	0	0	0
	35	36	1923	65	83	65	62	55	0	0	0	0
	36	37	1923	65	83	65	62	55	0	0	0	0
	37	38	1923	65	83	65	62	55	0	0	0	0
	38	39	1923	65	83	65	62	55	0	0	0	С
	39	40	1923	65	83	65	62	55	0	0	0	С
	40	41	1923	65	83	65	62	55	0	0	0	0
	41	42	1923	65	83	65	62	55	0	0	0	0
	42	43	1923	65	83	65	62	55	0	0	0	0
	43	44	1923	65	83	65	62	55	0	0	0	0
	44	45	1923	65	83	65	62	55	0	0	0	C
	45	46	1923	65	83	65	62	55	0	0	0	C
	46	47	1923	65	83	65	62	55	0	0	0	0
	47	48	1923	65	83	65	62	55	0	0	0	C
	48	49	1923	65	83	65	62	55	0	0	0	0
	49	50	1923	65	83	65	62	55	0	0	0	C
	50	51	1923	65	83	65	62	55	0	0	0	0
	51	52	1923	65	83	65	62	55	0	0	0	C
	52	53	1923	65	83	65	62	55	0	0	0	C
	53	54	1923	65	83	65	62	55	0	0	0	0
	54	55	1923	65	83	65	62	55	0	0	0	0
	55	56	1923	65	83	65	62	55	0	0	0	C
	56	57	1923	65	83	65	62	55	0	0	0	C
	57	58										
On ramp fr Rosamond Blvd (NB)	0	116	705	35	30	35	23	35	0	0	0	0

NPUT: TRAFFIC FOR LAeq1h Volumes						Ke	ern COG F	Retrofi	t Noise E	Barrier		
	1	117	705	35	30	35	23	35	0	0	0	0
	2	118	705	35	30	35	23	35	0	0	0	0
	3	119	705	35	30	35	23	35	0	0	0	0
	4	120	705	35	30	35	23	35	0	0	0	0
	5	121	705	35	30	35	23	35	0	0	0	0
	6	122	705	35	30	35	23	35	0	0	0	0
	7	123										
Off ramp to Rosamond Blvd (NB)	8	124	1140	35	49	35	37	35	0	0	0	0
	9	125	1140	35	49	35	37	35	0	0	0	0
	10	126	1140	35	49	35	37	35	0	0	0	0
	11	127	1140	35	49	35	37	35	0	0	0	0
	12	128	1140	35	49	35	37	35	0	0	0	0
	13	129	1140	35	49	35	37	35	0	0	0	0
	14	130										
SB On ramp fr W Rosamond Blvd	15	131	922	35	40	35	30	35	0	0	0	0
·	16	132	922	35	40	35	30	35	0	0	0	0
	0	183	0	0	0	0	0	0	0	0	0	0
	0	184	0	0	0	0	0	0	0	0	0	0
	17	185	0	0	0	0	0	0	0	0	0	0
	18	186	0	0	0	0	0	0	0	0	0	0
	19	187	0	0	0	0	0	0	0	0	0	0
	20	188	0	0	0	0	0	0	0	0	0	0
	21	189	0	0	0	0	0	0	0	0	0	0
	22	190	0	0	0	0	0	0	0	0	0	0
	23	191										
Hillcrest Ave	0	140	0	0	0	0	0	0	0	0	0	0
	1	141										
Alexander Ave	2	142	0	0	0	0	0	0	0	0	0	0
	3	143										
Haven St	4	144	0	0	0	0	0	0	0	0	0	0
	5	145										
Rosewood Ave to Milstead	6	146	0	0	0	0	0	0	0	0	0	0
	7	147	0	0	0	0	0	0	0	0	0	0
	8	148	0	0	0	0	0	0	0	0	0	0
	9	149										
Rosamond Blvd WB	10	150	2307	40	99	40	74	40	0	0	0	0

INPUT: TRAFFIC FOR LAeq1h V	olumes					Kerı	n COG R	etrofit	Noise B	arrier		
	11	0 🗆 🗆	1265	40	54	40	41	40	0	0	0	C
	12	152	1265	40	54	40	41	40	0	0	0	C
	13	153										
Rosamond Blvd EB	14	154	1046	40	45	40	34	40	0	0	0	С
	15	155	1325	40	57	40	43	40	0	0	0	С
	16	156	1325	40	57	40	43	40	0	0	0	С
	17	157	1325	40	57	40	43	40	0	0	0	C
	18	158	1325	40	57	40	43	40	0	0	0	0
	19	159										
Laurel St to Poplar St	20	160	0	0	0	0	0	0	0	0	0	0
	21	161	0	0	0	0	0	0	0	0	0	0
	22	162	0	0	0	0	0	0	0	0	0	0
	23	163	0	0	0	0	0	0	0	0	0	0
	24	164										
C st to Poplar St	25	165	0	0	0	0	0	0	0	0	0	0
	26	166	0	0	0	0	0	0	0	0	0	0
	27	167	0	0	0	0	0	0	0	0	0	0
	28	168										
W B St	29	169	0	0	0	0	0	0	0	0	0	0
	30	170										
Oak St	31	171	0	0	0	0	0	0	0	0	0	0
	32	172										
Elm St	33	173	0	0	0	0	0	0	0	0	0	0
	34	174										
Orange St	35	175	0	0	0	0	0	0	0	0	0	0
	36	176										
Granite St	37	177	0	0	0	0	0	0	0	0	0	C
	38	178										

INPUT: RECEIVERS			,					Kern COG	Retrofit N	oise Barri	er
LSA Associates, Inc.						16 Septen	nber 2010				
P. Ault						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Kern C	OG R	etrofit Noise E	Barrier	I						
RUN:	Future										
Receiver											
Name	No.	#DUs	Coordinates	(around)		Height	Input Sou	nd Levels	and Criteri	a	Active
			X	Y	Z	above		Impact Cr		NR	in
					<u> </u>	Ground	_	LAeq1h	Sub'l	Goal	Calc.
							•	•			
			ft	ft	ft	ft	dBA	dBA	dB	dB	+
R1	38	1	6,510,420.0	2,139,438.0	2,358.00	4.92	0.00	66	12.0	5.0	0 Y
R2	39	1	· · ·		· ·						
R3	40	1									0 Y
R4	41	1	6,510,419.0	2,138,853.0	2,352.00	4.92	0.00	66	12.0	5.0	0 Y
R5	42	1	6,510,428.0	2,138,609.0	2,349.00	4.92	0.00	66	12.0	5.0	0 Y
R6	43	1	6,510,404.0	2,138,441.0	2,350.00	4.92	0.00	66	12.0	5.0	0 Y
R7	44	1	6,510,407.0	2,138,396.0	2,350.00	4.92	0.00	66	12.0	5.0	0 Y
R8	45	1	6,510,488.0	2,138,165.0	2,347.00	4.92	0.00	66	12.0	5.0	0 Y
R9	46	1	6,510,479.0	2,137,961.0	2,348.00	4.92	0.00	66	12.0	5.0	0 Y
R10	47	1	6,510,480.0	2,137,788.0	2,350.00	4.92	0.00	66	12.0	5.0	0 Y
R11	48	1	6,510,486.0	2,137,601.0	2,344.00	4.92	0.00	66	12.0	5.0	0 Y
R12	49	1	6,510,491.0	2,137,472.0	2,342.00	4.92	0.00	66	12.0	5.0	
R13	50	1	6,510,484.0	2,138,384.0	2,350.00				12.0	5.0	
R14	51	1	0,010,010	1 1							
R15	52	1	-,,								
R16	53	1	-,,								
R17	54	1	-,,		· ·						
R18	55	1	-,,								
R19	56	1	-,,								
R20	57	1	-,-:-,								
R21	58	1	-,-:-,								
R22	59	1	6,509,845.0	2,136,598.0	2,330.00	4.92	0.00	66	12.0	5.0	0 Y

INPUT: RECEIVERS							Kern COG	Retrofit No	oise Barrier	
R23	60	6,509,879.0	2,136,489.0	2,334.00	4.92	0.00	66	12.0	5.0	Υ
R24	61	6,509,877.0	2,136,317.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R25	62	6,509,880.0	2,136,137.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R26	63	6,509,882.0	2,135,974.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R27	64	6,509,918.0	2,135,925.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R28	65	6,509,917.0	2,135,681.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R29	66	6,509,850.0	2,135,687.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R30	67	6,509,733.0	2,135,695.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R31	68	6,509,804.0	2,135,916.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R32	69	6,509,685.0	2,135,921.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R33	70	6,509,661.0	2,136,075.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R34	71	6,509,666.0	2,136,250.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R35	72	6,509,666.0	2,136,421.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R36	73	6,509,658.0	2,136,601.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R37	74	6,510,620.0	2,136,657.0	2,334.00	4.92	0.00	66	12.0	5.0	Υ
R38	75 <i>′</i>	6,510,597.0	2,136,307.0	2,332.00	4.92	0.00	66	12.0	5.0	Υ
R39	76	6,510,571.0	2,135,897.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R40	77	6,510,492.0	2,135,775.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R41	78	6,510,549.0	2,135,716.0	2,327.00	4.92	0.00	66	12.0	5.0	Υ
R42	79	6,510,293.0	2,135,698.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R43	80	6,510,415.0	2,135,699.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R44	81	6,510,294.0	2,135,034.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R45	82	6,510,478.0	2,135,038.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R46	83	6,510,605.0	2,135,034.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R47	84	6,510,294.0	2,134,818.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R48	85	6,510,608.0	2,134,817.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R49	86	6,510,469.0	2,134,759.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R50	87	6,510,470.0	2,134,529.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R51	88	6,510,604.0	2,134,453.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R52	89	6,510,287.0	2,134,199.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R53	90	6,510,467.0	2,134,214.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R54	91	6,510,592.0	2,134,219.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ

LSA Associates, Inc.						ember 2	2010											
P. Ault					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	Kern	COG Ret	rofit No	ise Barri	er													
RUN:	Futur	е																
Barrier									Points									
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segment			
		Min	Max	\$ per	\$ per	Тор	Run:Rise	s \$ per			х	Y	Z	at	Seg Ht Per	turbs	On	Important
				Unit	Unit	Width		Unit						Point	Incre- #Up	#Dn	Struct	? Reflec-
				Area	Vol.			Length							ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Barrier1	W	0.00	99.99	0.00				0.00	0	1	6,510,312.0	2,136,173.0	2,332.00	15.00	0.00	0 (0	
									1	2	6,510,387.0	2,136,181.0	2,332.00	15.00	0.00	0 (0	
									2	3		2,136,233.0			0.00	0 (0	
									3	4	6,510,312.0	2,136,236.0	2,332.00	15.00	0.00	0 (0	
									4	5	6,510,310.0	2,136,186.0	2,332.00	15.00			1	
Barrier2	W	0.00	99.99	0.00				0.00	5	6	6,510,292.0	2,136,280.0	2,332.00	15.00	0.00	0 (0	
									6	7	6,510,340.0	2,136,280.0	2,332.00	15.00	0.00	0 (0	
									7	8	6,510,340.0	2,136,323.0	2,332.00	15.00	0.00	0 (0	
									8	9	6,510,290.0	2,136,338.0	2,332.00	15.00	0.00	0 (0	
									9	10	6,510,294.0	2,136,291.0	2,332.00	15.00				
Barrier3	W	0.00	99.99	0.00				0.00	10	11	6,510,352.0	2,136,356.0	2,332.00	15.00	0.00	0 (0	
									11	12	6,510,412.0	2,136,357.0	2,332.00	15.00	0.00	0 (0	
									12	13	6,510,413.0	2,136,456.0	2,332.00	15.00	0.00	0 (0	
									13	14	6,510,352.0	2,136,456.0	2,332.00	15.00	0.00	0 (0	
									14	15	6,510,349.0	2,136,368.0	2,332.00	15.00				
SB1	W	0.00	12.00	0.00				0.00	15	16	6,510,355.0	2,139,737.0	2,378.00	0.00	2.00	6 (0	
									16	17	6,510,350.0	2,139,701.0	2,376.00	0.00	2.00	6 (0	
									17	18	6,510,345.0	2,139,659.0	2,374.00	0.00	2.00	6 (0	
									18	19	6,510,338.0	2,139,603.0	2,372.00	0.00	2.00	6 (0	
									19	20	6,510,334.0	2,139,549.0	2,370.00	0.00	2.00	6 (0	
									20	21	6,510,332.0	2,139,493.0	2,368.00	0.00	2.00	6 (0	
									21	22	-,,					-	0	
									22	23							0	
									23	24							0	
									24	25						_	0	
									25	26	-,,					-	0	
									26	27	· · ·						0	
									27	28			1				0	
									28	29			1			-	0	
									29	30		2,139,052.0	1				0	
									30	31		2,139,004.0	<u> </u>				0	
									31	32		2,138,953.0	1				0	
									32	33		2,138,904.0				_	0	
									33	34		2,138,853.0	<u> </u>				0	
									34	35	6,510,310.0	2,138,804.0	2,351.00	0.00	2.00	6 (0	

INPUT: BARRIERS	Kern COG Retrofit Noise Barrier
-----------------	---------------------------------

•									
				35	36 6,510,309.0	2,138,755.0 2,350.0	0.00 2.00	6 0	
				36 3	37 6,510,307.0	2,138,704.0 2,348.0	0 0.00 2.00	6 0	
				37	38 6,510,306.0	2,138,654.0 2,348.0	0 0.00 2.00	6 0	
						2,138,604.0 2,346.0		6 0	
						2,138,553.0 2,346.0		6 0	
						2,138,504.0 2,346.0		6 0	
						2,138,454.0 2,345.0		6 0	
						2,138,404.0 2,344.0		6 0	
						2,138,353.0 2,344.0			
						2,138,304.0 2,343.0		6 0	
						2,138,254.0 2,342.0		6 0	
						2,138,203.0 2,341.0		6 0	
				47		2,138,153.0 2,340.0		6 0	
				48	49 6,510,293.0	2,138,103.0 2,340.0	0.00 2.00	6 0	
				49 5	50 6,510,292.0	2,138,054.0 2,339.0	0.00 2.00	6 0	
				50 5	51 6,510,291.0	2,138,003.0 2,338.0	0.00 2.00	6 0	
				51 5	52 6,510,287.0	2,137,954.0 2,338.0	0 0.00 2.00	6 0	
						2,137,904.0 2,338.0		6 0	
						2,137,854.0 2,338.0		6 0	
						2,137,805.0 2,338.0		6 0	
						2,137,754.0 2,338.0		6 0	
						2,137,703.0 2,338.0		6 0	
						2,137,653.2 2,338.0			
						2,137,604.0 2,338.0		6 0	
						2,137,554.0 2,338.0		6 0	
						2,137,504.0 2,338.0		6 0	
						2,137,453.0 2,338.0		6 0	
				111 11	12 6,510,309.0	2,137,403.0 2,338.0	0.00		
SB2	W 0.00 16.00	0.00	0.00	103	61 6,509,986.0	2,136,720.0 2,330.0	0.00 2.00	8 0	
				104	62 6,509,989.0	2,136,670.0 2,330.0	0.00 2.00	8 0	
				105	63 6,509,993.0	2,136,621.0 2,330.0	0.00 2.00	8 0	
				106	64 6,509,997.0	2,136,571.0 2,330.0	0 0.00 2.00	8 0	
				107		2,136,520.0 2,330.0		8 0	
						2,136,471.0 2,330.0		8 0	
						2,136,421.0 2,330.0		8 0	
						2,136,372.0 2,330.0		8 0	
						2,136,323.0 2,330.0		8 0	
						2,136,272.0 2,330.0		8 0	
						2,136,272.0 2,330.0			
					1 1			8 0	
						2,136,173.0 2,330.0		8 0	
						2,136,123.0 2,329.0		8 0	
						2,136,071.0 2,328.0		8 0	
						2,136,025.0 2,328.0		8 0	
				118 11	14 6,510,022.0	2,135,975.0 2,328.0	0.00 2.00	8 0	
						2,135,926.0 2,328.0		8 0	
				120 11	16 6,510,021.0	2,135,875.0 2,328.0	0 0.00 2.00	8 0	
						2,135,826.0 2,328.0		8 0	
						2,135,776.0 2,328.0		8 0	
						2,135,728.0 2,328.0		8 0	
						_,	0.00 2.00	O	1

INPUT: BARRIERS	Kern COG Retrofit Noise Barrier
-----------------	---------------------------------

						404	100	0.540.040.0	0.405.670.0.0.000.00	0.00	0.00	0	^		
						124			2,135,679.0 2,328.00	0.00	2.00	8	0		
						125			2,135,629.0 2,328.00	0.00	2.00	8	0		
						126			2,135,579.0 2,328.00	0.00	2.00	8	0		
						127			2,135,527.0 2,328.00	0.00	2.00	8	0		
						128			2,135,479.0 2,328.00	0.00					
SB3	W	0.00	16.00	0.00	0.0	00 89			2,136,146.0 2,328.00	0.00	2.00	8	0		
						90	76	6,510,242.0	2,136,096.0 2,328.00	0.00	2.00	8	0		
						91	77	6,510,234.0	2,136,046.0 2,328.00	0.00	2.00	8	0		
						92	78	6,510,228.0	2,135,996.0 2,328.00	0.00	2.00	8	0		
						93	79	6,510,221.0	2,135,945.0 2,328.00	0.00	2.00	8	0		
						94	80	6,510,211.0	2,135,896.0 2,328.00	0.00	2.00	8	0		
						95	81	6,510,208.0	2,135,847.0 2,328.00	0.00	2.00	8	0		
						96	82	6,510,201.0	2,135,797.0 2,328.00	0.00	2.00	8	0		
						97	83	6,510,197.0	2,135,747.0 2,328.00	0.00	2.00	8	0		
						98	125	6,510,195.0	2,135,697.0 2,328.00	0.00	2.00	8	0		
						99	126		2,135,647.0 2,328.00	0.00	2.00	8	0		
						100) 127		2,135,597.0 2,328.00	0.00	2.00	8	0		
						101			2,135,547.0 2,328.00	0.00	2.00	8	0	-	
						102			2,135,497.0 2,328.00	0.00					
SB4	W	0.00	16.00	0.00	0.0	00 83	84		2,135,249.0 2,327.00	0.00	2.00	8	0		
001	+ **	0.00	10.00	0.00	0.0	84	85		2,135,200.0 2,327.00	0.00	2.00	8	0		
						85			2,135,150.0 2,327.00	0.00	2.00	8	0		
						86			2,135,101.0 2,326.00	0.00	2.00	8	0		
						87			2,135,051.0 2,326.00		2.00	8	0		
						_	88 89		2,135,000.0 2,326.00	0.00	2.00	8	0		
						88			2,134,950.0 2,326.00			8			
						89	90			0.00	2.00		0		
						90			2,134,901.0 2,326.00	0.00	2.00	8	0		
						91	92		2,134,851.0 2,326.00	0.00	2.00	8	0		
						92			2,134,801.0 2,326.00	0.00	2.00	8	0		
						93			2,134,751.0 2,326.00	0.00	2.00	8	0		
						94	95		2,134,701.0 2,326.00	0.00	2.00	8	0		
						95	96		2,134,650.0 2,326.00	0.00	2.00	8	0		
						96	97		2,134,600.0 2,326.00	0.00	2.00	8	0		
						97			2,134,551.0 2,326.00	0.00	2.00	8	0		
						98	99		2,134,500.0 2,326.00	0.00	2.00	8	0		
						99	100		2,134,450.0 2,326.00	0.00	2.00	8	0		
						100	101		2,134,400.0 2,326.00	0.00	2.00	8	0		\Box
						101	102	6,510,153.0	2,134,350.0 2,326.00	0.00	2.00	8	0		
						102	2 103	6,510,152.0	2,134,301.0 2,326.00	0.00	2.00	8	0		
						103	3 104	6,510,150.0	2,134,250.0 2,326.00	0.00	2.00	8	0		
						104	105	6,510,150.0	2,134,201.0 2,326.00	0.00	2.00	8	0		
						105	106	6,510,151.0	2,134,150.0 2,326.00	0.00	2.00	8	0		
						106	3 107	6,510,152.0	2,134,101.0 2,326.00	0.00	2.00	8	0		
						107	7 108	6,510,155.0	2,134,051.0 2,326.00	0.00	2.00	8	0		
						108	3 109		2,134,000.0 2,326.00	0.00					
						-11	1 100	,,	, , , ,						

LSA Associates, Inc.					16 September	2010
P. Ault					TNM 2.5	
INPUT: BUILDING ROWS						
PROJECT/CONTRACT:	Kern COG	Retrofit Nois	∣ e Barri	er		
RUN:	Future	10110111111010	o Barri			
Building Row			Points			
Name	Average	Building	No.	Coordinates (ground)	
Name	Height	Percent	140.	X	Y	Z
	ft	%		ft	ft	ft
Building1	15.00	80	1	6,510,460.0	2,139,539.0	2,358.00
Danialing!	10.00	00	2		2,138,597.0	2,351.00
Building2	15.00	80	3			-
			4			
Building3	15.00	80	5			
· ·			6			
Building4	15.00	80	7	6,510,628.0	2,138,359.0	2,350.00
			8	6,510,627.0	2,138,486.0	2,350.00
Building5	15.00	80	9	6,510,529.0	2,138,235.0	2,348.00
			10	6,510,516.0	2,137,460.0	2,342.00
Building7	15.00	80	13	6,509,796.0	2,136,616.0	2,330.00
			14	6,509,886.0	2,136,614.0	2,330.00
Building8	15.00	80	15	6,509,908.0	2,136,506.0	2,334.00
			16	6,509,910.0	2,135,949.0	2,330.00
Building9	15.00	80	17	6,509,940.0	2,135,893.0	2,330.00
			18	6,509,607.0	2,135,888.0	2,328.00
Building10	15.00	80	19	6,509,934.0	2,135,729.0	2,328.00
			20	6,509,576.0	2,135,723.0	2,328.00
Building11	15.00	80	21		2,135,942.0	-
			22		2,136,678.0	
Building12	15.00	80	23			
			24			
			41			
			42	6,510,581.0	2,136,293.0	2,332.00

INPUT: BUILDING ROWS

Building13	15.00	80	25	6,510,270.0	2,135,716.0	2,328.00
			26	6,510,274.0	2,135,665.0	2,328.00
			43	6,510,442.0	2,135,670.0	2,326.00
Building14	15.00	80	27	6,510,491.0	2,135,758.0	2,326.00
			28	6,510,490.0	2,135,656.0	2,326.00
			44	6,510,610.0	2,135,656.0	2,328.00
			45	6,510,603.0	2,135,765.0	2,328.00
Building15	0.00	80	29	6,510,539.0	2,135,982.0	2,330.00
			30	6,510,535.0	2,135,853.0	2,330.00
			46	6,510,635.0	2,135,852.0	2,330.00
			47	6,510,631.0	2,135,969.0	2,330.00
Building16	0.00	80	31	6,510,266.0	2,135,001.0	2,326.00
			32	6,510,673.0	2,135,009.0	2,326.00
Building17	0.00	80	33	6,510,265.0	2,134,846.0	2,326.00
			34	6,510,679.0	2,134,845.0	2,326.00
Building18	0.00	80	37	6,510,271.0	2,134,718.0	2,326.00
			38	6,510,673.0	2,134,721.0	2,326.00
Building19	0.00	80	39	6,510,269.0	2,134,555.0	2,326.00
			40	6,510,682.0	2,134,572.0	2,326.00
Building20	0.00	20	48	6,510,270.0	2,134,421.0	2,326.00
			49	6,510,684.0	2,134,430.0	2,328.00
Building21	0.00	20	50	6,510,264.0	2,134,222.0	2,326.00
			51	6,510,685.0	2,134,231.0	2,326.00

RESULTS: SOUND LEVELS				Time to the second seco		7	Kern COG	Retrofit No	oise Barrier		1	
LSA Associates, Inc.							16 Septem	her 2010				
P. Ault							TNM 2.5	1501 2010				
							_	d with TNM	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofit	t Noise Barrie	er							
RUN:		Existin	g									
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	avement type	shall be use	d unless	
								a State high	ghway agency	y substantiate	s the use	
ATMOSPHERICS:		68 deg	F, 50% RH	İ				of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier		J	
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R1	38	3 1	0.0	65.6	66	65.6	12		65.6	0.0		-5.
R2	39) 1	0.0	67.5	66	67.5	12	Snd Lvl	67.5	0.0		5 -5.
R3	40) 1	0.0	67.4	66	67.4			67.4	0.0		
R4	41		0.0						68.1			
R5	42								67.5			-
R6	43			0.110					64.3			
R7	44								64.3			
R8	45								63.9			
R9	46			_					64.7			
		r	0.0	64.9	66	64.9	12		64.9	0.0		-5
R10	47											_
R10 R11	48	3 1	0.0	63.6					63.6			5 -5
R10		3 1	0.0	63.6 62.8	66	62.8	12		63.6 62.8 63.2	0.0	;	5 -5

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

52

53

54

55

56

57

58

59

60

61

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

58.8

55.6

54.8

54.4

53.2

55.9

56.3

59.5

61.9

58.4

66

66

66

66

66

66

66

66

66

66

58.8

55.6

54.8

54.4

53.2

55.9

56.3

59.5

61.9

58.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

5

5

5

5

5

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

-5.0

16 Septembe

58.8

55.6

54.8

54.4

53.2

55.9

56.3

59.5

61.9

58.4

12

12

12

12

12

12

12

12

12

12

RESULTS: SOUND LEVELS							Kern COG I	Retrofit No	ise Barrier			
R25	62	1	0.0	60.5	66	60.5	12		60.5	0.0	5	-5.0
R26	63	1	0.0	61.9	66	61.9	12		61.9	0.0	5	-5.0
R27	64	1	0.0	66.5	66	66.5	12	Snd Lvl	66.5	0.0	5	-5.0
R28	65	1	0.0	68.2	66	68.2	12	Snd Lvl	68.2	0.0	5	-5.0
R29	66	1	0.0	64.3	66	64.3	12		64.3	0.0	5	-5.0
R30	67	1	0.0	59.1	66	59.1	12		59.1	0.0	5	-5.0
R31	68	1	0.0	60.4	66	60.4	12		60.4	0.0	5	-5.0
R32	69		0.0	56.6		56.6			56.6	0.0	5	-5.0
R33	70		0.0	57.7		57.7	12		57.7	0.0	5	-5.0
R34	71	1	0.0	56.6	66	56.6			56.6	0.0	5	-5.0
R35	72		0.0	57.3		57.3	12		57.3	0.0	5	-5.0
R36	73		0.0	57.6	66	57.6			57.6	0.0	5	-5.0
R37	74		0.0	59.8		59.8			59.8	0.0	5	-5.0
R38	75	1	0.0	56.6	66	56.6			56.6	0.0	5	-5.0
R39	76		0.0	58.7		58.7	12		58.7	0.0	5	-5.0
R40	77		0.0	60.1		60.1	12		60.1	0.0	5	-5.0
R41	78		0.0	58.5	66	58.5			58.5	0.0	5	-5.0
R42	79		0.0	65.4		65.4	12		65.4	0.0	5	-5.0
R43	80	1	0.0	61.1	66	61.1	12		61.1	0.0	5	-5.0
R44	81	1	0.0	67.8		67.8	12	Snd Lvl	67.8	0.0	5	-5.0
R45	82		0.0	59.7		59.7	12		59.7	0.0	5	-5.0
R46	83	1	0.0	56.5		56.5			56.5	0.0	5	-5.0
R47	84		0.0	67.5		67.5		Snd Lvl	67.5	0.0	5	-5.0
R48	85		0.0	56.3		56.3			56.3	0.0	5	-5.0
R49	86		0.0	59.7		59.7	12		59.7	0.0	5	-5.0
R50	87		0.0	59.3		59.3	12		59.3	0.0	5	-5.0
R51	88		0.0	56.6		56.6	12		56.6	0.0	5	-5.0
R52	89		0.0	67.0		67.0		Snd Lvl	67.0	0.0	5	-5.0
R53	90		0.0	59.9		59.9			59.9	0.0	5	-5.0
R54	91	1	0.0	56.5	66	56.5	12		56.5	0.0	5	-5.0
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		54	0.0	0.0	0.0							
All Impacted		9	0.0	0.0	0.0							
All that meet NR Goal		0	0.0	0.0	0.0							

LSA Associates, Inc.					16 Septembe	r 2010					
P. Ault					TNM 2.5	. 2010					
INPUT: ROADWAYS							Average p	avement typ	e shall be	used unles	S
PROJECT/CONTRACT:	Kern CO	3 Retrofit	Noise Barrier				a State high	ghway agend	y substant	iates the u	se
RUN:	Existing						of a differ	ent type with	the appro	al of FHW	A
Roadway		Points									
Name	Width	Name	No. Coor	dinates	(pavement)		Flow Con	trol		Segment	
			X		Υ	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft		ft		ft	ft		mph	%		
SR14 (SB)	44.0	0	1 6,51	10,367.0	2,139,960.0	2,386.00				Average	
		1	2 6,51	10,329.0	2,139,740.0	2,378.00				Average	
		2	3 6,51	10,307.0	2,139,514.0	2,368.00				Average	
		3	4 6,51	10,301.0	2,139,294.0	2,362.00				Average	
		4	5 6,51	10,293.0	2,139,071.0	2,355.00				Average	
		5	6 6,51	10,288.0	2,138,878.0	2,352.00				Average	
		6	7 6,51	10,282.0	2,138,642.0	2,348.00				Average	
		7	8 6,51	10,269.0	2,138,379.0	2,344.00				Average	
		8	9 6,51	10,260.0	2,138,130.0	2,340.00				Average	
		9	10 6,51	10,252.0	2,137,895.0	2,338.00				Average	
		10	11 6,51	10,244.0	2,137,653.0	2,338.00				Average	
		11	12 6,51	10,234.0	2,137,419.0	2,338.00				Average	
		12	13 6,51	10,226.0	2,137,182.0	2,332.00				Average	
		13	14 6,51	10,210.0	2,136,893.0	2,330.00				Average	
		14	15 6,51	10,207.0	2,136,663.0					Average	
		15	16 6,51	10,199.0						Average	
		16		10,191.0						Average	
		17		10,184.0						Average	
		18	,	10,177.0						Average	
		19		10,168.0	1					Average	
		20		10,160.0						Average	
		21		10,154.0						Average	
		22		10,151.0						Average	
		23		10,141.0		-				Average	
		24	25 6,51	10,136.0	2,134,616.0	2,326.00				Average	

INPUT: ROADWAYS	Kern COG Retrofit Noise Barrier

INFOI. ROADWATS						L/CIII (CO Kellolit i	ioise Daillei	
		25	26	6,510,127.0	2,134,401.0	2,326.00		Α	verage
		26	27	6,510,123.0	2,134,291.0	2,326.00		Α	verage
		27	28	6,510,125.0	2,134,069.0	2,326.00		Α	verage
		28	29	6,510,125.0	2,133,933.0	2,326.00		Α	verage
		29	30	6,510,141.0	2,133,650.0	2,324.00		Α	verage
		30	31	6,510,151.0	2,133,443.0	2,324.00			
SR14 (NB)	44.0	31	32	6,510,027.0	2,133,442.0	2,324.00		Α	verage
		32	33	6,510,009.0	2,134,403.0	2,326.00		Α	verage
		33	34	6,510,015.0	2,134,613.0	2,326.00		Α	verage
		34	35	6,510,023.0	2,134,836.0	2,326.00		Α	verage
		35	36	6,510,035.0	2,135,049.0	2,326.00		А	verage
		36	37	6,510,038.0	2,135,170.0	2,327.00		Α	verage
		37	38	6,510,043.0	2,135,383.0	2,328.00		Α	verage
		38	39	6,510,048.0	2,135,591.0	2,328.00		Α	verage
		39	40	6,510,059.0	2,135,818.0	2,328.00		Α	verage
		40	41	6,510,066.0	2,136,052.0	2,328.00		Α	verage
		41	42		2,136,218.0	2,330.00			verage
		42	43		2,136,439.0	2,330.00		Α	verage
		43	44		2,136,664.0	2,330.00		Α	verage
		44	45	6,510,097.0	2,136,895.0	2,330.00		Α	verage
		45	46	6,510,108.0	2,137,185.0	2,332.00		Α	verage
		46	47	6,510,117.0	2,137,421.0	2,338.00		Α	verage
		47	48	6,510,124.0		2,338.00			verage
		48	49		2,137,896.0	2,338.00			verage
		49	50	6,510,142.0	2,138,137.0	2,340.00		Α	verage
		50	51		2,138,386.0	2,344.00			verage
		51	52		2,138,635.0	2,348.00			verage
		52	53	6,510,170.0	2,138,884.0	2,352.00		Α	verage
		53	54		2,139,077.0	2,355.00			verage
		54	55		2,139,317.0	2,362.00			verage
		55	56		2,139,540.0	2,370.00			verage
		56	57		2,139,750.0	2,380.00			verage
		57	58		2,139,982.0	2,388.00			
On ramp fr Rosamond Blvd (NB)	20.0	0	116		2,136,997.0	2,340.00		А	verage
		1	117		2,137,012.0	2,348.00			verage
		2	118		2,137,240.0	2,341.00			verage
		3	119		2,137,420.0	2,340.00			verage
		4	120		2,137,660.0	2,338.00			verage
		5	121	6,510,274.0		2,338.00			verage

NPUT: ROADWAYS						Kern COG Retrofit Noise Barrier
		6 122	6,510,278.0	2,138,130.0	2,340.00	Average
		7 123	6,510,269.0	2,138,379.0	2,344.00	
Off ramp to Rosamond Blvd (NB)	20.0	8 124	6,510,178.0	2,135,818.2	2,328.00	Average
		9 125	6,510,214.5	2,136,047.2	2,328.00	Average
		10 126	6,510,235.0	2,136,213.0	2,330.00	Average
		11 127	6,510,287.0	2,136,436.0	2,330.00	Average
		12 128	6,510,385.0	2,136,662.0	2,336.00	Average
		13 129	6,510,601.0	2,136,903.0	2,344.00	Average
		14 130	6,511,474.0	2,136,959.5	2,340.00	
On ramp fr W Rosamond Blvd (SB)	20.0	15 131	6,509,509.5	2,136,925.0	2,338.00	Average
		16 132	6,509,930.0	2,136,900.0	2,350.00	Average
		17 133	6,510,013.0	2,136,666.0	2,340.00	Average
		18 134	6,510,022.0	2,136,436.0	2,335.00	Average
		19 135	6,510,036.0	2,136,216.0	2,333.00	Average
		20 136	6,510,041.0	2,136,051.0	2,330.00	Average
		21 137	6,510,041.0	2,135,816.0	2,330.00	Average
		22 138	6,510,036.0	2,135,592.0	2,328.00	Average
		23 139	6,510,043.0			
Hillcrest Ave	36.0	0 140	6,510,885.0			Average
		1 141	6,510,383.0	2,139,584.0	2,360.00	
Alexander Ave	36.0	2 142	6,510,886.0	2,138,554.0	2,354.00	Average
		3 143	6,510,375.0	2,138,551.0	2,347.00	
Haven St	36.0	4 144				Average
		5 145				
Rosewood Ave to Milstead	36.0	6 146				Average
		7 147		2,138,292.0		Average
		8 148				Average
		9 149				
Rosamond Blvd WB	36.0	10 150				Average
		11 151				Average Y
		12 152		2,136,964.0		Average
		13 153		2,136,961.0		
Rosamond Blvd EB	36.0			2,136,925.0		Average
	33.0	15 155		2,136,938.0		Average Y
		16 156				Average
		17 157		2,136,938.0		Average
		18 158				Average
		19 159				
_aurel St to Poplar St	36.0					Average

INPUT: ROADWAYS

		21	161	6,509,782.0	2,136,799.0	2,330.00		Average
		22	162	6,509,933.0	2,136,673.0	2,328.00		Average
		23	163	6,509,968.0	2,135,807.0	2,330.00		Average
		24	164	6,509,558.0	2,135,801.0	2,328.00		
C st to Poplar St	36.0	25	165	6,510,941.0	2,136,720.0	2,336.00		Average
		26	166	6,510,487.0	2,136,712.0	2,336.00		Average
		27	167	6,510,470.0	2,135,826.0	2,328.00		Average
		28	168	6,510,948.0	2,135,814.0	2,332.00		
W B St	36.0	29	169	6,510,963.0	2,134,301.0	2,324.00		Average
		30	170	6,510,962.0	2,135,077.0	2,326.00		
Oak St	36.0	31	171	6,510,954.5	2,134,933.8	2,326.00		Average
		32	172	6,510,229.0	2,134,920.0	2,326.00		
Elm St	36.0	33	173	6,510,953.5	2,134,663.0	2,326.00		Average
		34	174	6,510,228.0	2,134,644.0	2,326.00		
Orange St	36.0	35	175	6,510,954.0	2,134,341.2	2,324.00		Average
		36	176	6,510,239.0	2,134,322.0	2,326.00		
Granite St	36.0	37	177	6,510,216.0	2,135,058.0	2,326.00		Average
		38	178	6,510,223.0	2,134,156.0	2,326.00		
		1						

Name Name No. Segment No. INPUT: TRAFFIC FOR LAeq1h Volumes	П		1			K	ern COG	Retrof	it Noise	Barrier	1		
NPUT: TRAFFIC FOR LAeq1h Volumes PROJECT/CONTRACT: Existing Points Name ISA Associatos Inc				16 Son	tombor '	2010							
NPUT: TRAFFIC FOR Laeq1h Volumes Render Re							2010						
Name Name No. Segment No. r. Auit				I INIVI Z	. 5 								
Name	INPUT: TRAFFIC FOR LAeq1h Volumes												
Name No. Name No. No. No. No. No. No. No. Name No. N	PROJECT/CONTRACT:	Kern COG I	Retrofit No	oise Barr	ier								
Name No. Late of the part	RUN:	Existing											
National Parison National Pa	Roadway	Points											
No. No.	Name	Name	No.	Segmen	t								
SR14 (SB) 0 1 737 65 32 65 24 55 0 0 0 0 SR14 (SB) 0 1 737 65 32 65 24 55 0 0 0 0 1 2 33 737 65 32 65 24 55 0 0 0 0 0 4 5 737 65 32 65 24 55 0 0 0 0 0 5 6 737 65 32 65 24 55 0 0 0 0 0 6 737 65 32 65 24 55 0				Autos		MTruck	S	HTrucks	•	Buses	-	Motorcy	cles
SR14 (SB) 0 1 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				V	S	V	S	V	S	V	S	V	S
1 2 737 65 32 65 24 55 0 0				veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
2 3 737 65 32 65 24 55 0 0 0 0 3 4 737 65 32 65 24 55 0 0 0 0 4 5 737 65 32 65 24 55 0 0 0 0 5 6 737 65 32 65 24 55 0 0 0 0 6 7 737 65 32 65 24 55 0 0 0 0 7 8 737 65 32 65 24 55 0 0 0 0 8 9 737 65 32 65 24 55 0 0 0 0 9 10 737 65 32 65 24 55 0 0 0 0 10 11 737 65 32 65 24 55 0 0	SR14 (SB)	0	1	737	65	32	65	24	55	0	0	0	0
3 4 737 65 32 65 24 55 0 0 0 0 4 5 737 65 32 65 24 55 0 0 0 0 5 6 737 65 32 65 24 55 0 0 0 0 6 7 737 65 32 65 24 55 0 0 0 0 7 8 737 65 32 65 24 55 0 0 0 0 8 9 737 65 32 65 24 55 0 0 0 0 9 10 737 65 32 65 24 55 0 0 0 0 11 12 737 65 32 65 24 55 0 0 0 0 12 13 737 65 32 65 24 55 0 0		1	2	737	65	32	65	24	55	0	0	0	0
4 5 737 65 32 65 24 55 0 0 0 0 5 6 737 65 32 65 24 55 0 0 0 0 6 7 737 65 32 65 24 55 0 0 0 0 7 8 737 65 32 65 24 55 0 0 0 0 8 9 737 65 32 65 24 55 0 0 0 0 9 10 737 65 32 65 24 55 0 0 0 0 10 11 737 65 32 65 24 55 0 0 0 0 11 12 737 65 32 65 24 55 0 0 0 0 12 13 737 65 32 65 24 55 0 0		2	3	737			65	24			0	0	0
5 6 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td>3</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td></td<>		3	4								0		
6 7 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4	5								0		_
7 8 737 65 32 65 24 55 0 0 0 0 8 9 737 65 32 65 24 55 0 0 0 0 9 10 737 65 32 65 24 55 0 0 0 0 11 12 737 65 32 65 24 55 0 0 0 0 12 13 737 65 32 65 24 55 0 0 0 0 13 14 737 65 32 65 24 55 0 0 0 0 13 14 737 65 32 65 24 55 0 0 0 0 14 15 737 65 32 65 24 55 0 0 0 0 0 15 16 737 65 32 65 24 55 0<													_
8 9 737 65 32 65 24 55 0 0 0 0 9 10 737 65 32 65 24 55 0 0 0 0 10 11 737 65 32 65 24 55 0 0 0 0 11 12 737 65 32 65 24 55 0 0 0 0 12 13 737 65 32 65 24 55 0 0 0 0 13 14 737 65 32 65 24 55 0 0 0 0 14 15 737 65 32 65 24 55 0 0 0 0 15 16 737 65 32 65 24 55 0 0 0 0 17 18 737 65 32 65 24 55 0													
9 10 737 65 32 65 24 55 0 0 0 0 0 0 0 0 10 11 737 65 32 65 24 55 0 0 0 0 0 0 0 0 11 12 737 65 32 65 24 55 0 0 0 0 0 0 0 0 12 13 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 12 13 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 0 13 14 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 0 14 15 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 15 15 16 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 16 17 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 0 17 18 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 18 18 19 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
10 11 737 65 32 65 24 55 0 0 0 0 11 12 737 65 32 65 24 55 0 0 0 0 12 13 737 65 32 65 24 55 0 0 0 0 13 14 737 65 32 65 24 55 0 0 0 0 14 15 737 65 32 65 24 55 0 0 0 0 15 16 737 65 32 65 24 55 0 0 0 0 16 17 737 65 32 65 24 55 0 0 0 0 17 18 737 65 32 65 24 55 0 0 0 0 18 19 737 65 32 65 24 55 0 <													
11 12 737 65 32 65 24 55 0 0 0 0 12 13 737 65 32 65 24 55 0 0 0 0 13 14 737 65 32 65 24 55 0 0 0 0 14 15 737 65 32 65 24 55 0 0 0 0 15 16 737 65 32 65 24 55 0 0 0 0 16 17 737 65 32 65 24 55 0 0 0 0 17 18 737 65 32 65 24 55 0 0 0 0 18 19 737 65 32 65 24 55 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 20 21 737 65 32 65 24 55 0 0 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
12 13 737 65 32 65 24 55 0 0 0 0 13 14 737 65 32 65 24 55 0 0 0 0 14 15 737 65 32 65 24 55 0 0 0 0 15 16 737 65 32 65 24 55 0 0 0 0 16 17 737 65 32 65 24 55 0 0 0 0 17 18 737 65 32 65 24 55 0 0 0 0 18 19 737 65 32 65 24 55 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 20 21 737 65 32 65 24 55 0 <													
13 14 737 65 32 65 24 55 0 0 0 0 14 15 737 65 32 65 24 55 0 0 0 0 15 16 737 65 32 65 24 55 0 0 0 0 16 17 737 65 32 65 24 55 0 0 0 0 17 18 737 65 32 65 24 55 0 0 0 0 18 19 737 65 32 65 24 55 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 20 21 737 65 32 65 24 55 0 0 0 0 21 22 737 65 32 65 24 55 0 0 0 0													
14 15 737 65 32 65 24 55 0 0 0 0 15 16 737 65 32 65 24 55 0 0 0 0 16 17 737 65 32 65 24 55 0 0 0 0 17 18 737 65 32 65 24 55 0 0 0 0 18 19 737 65 32 65 24 55 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 20 21 737 65 32 65 24 55 0 0 0 0 21 22 737 65 32 65 24 55 0 0 0 0													
15 16 737 65 32 65 24 55 0 0 0 0 16 17 737 65 32 65 24 55 0 0 0 0 17 18 737 65 32 65 24 55 0 0 0 0 18 19 737 65 32 65 24 55 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 20 21 737 65 32 65 24 55 0 0 0 0 21 22 737 65 32 65 24 55 0 0 0 0													
16 17 737 65 32 65 24 55 0 0 0 0 17 18 737 65 32 65 24 55 0 0 0 0 18 19 737 65 32 65 24 55 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 20 21 737 65 32 65 24 55 0 0 0 0 21 22 737 65 32 65 24 55 0 0 0 0											_		
17 18 737 65 32 65 24 55 0 0 0 0 18 19 737 65 32 65 24 55 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 20 21 737 65 32 65 24 55 0 0 0 0 21 22 737 65 32 65 24 55 0 0 0											_		_
18 19 737 65 32 65 24 55 0 0 0 0 19 20 737 65 32 65 24 55 0 0 0 0 20 21 737 65 32 65 24 55 0 0 0 0 21 22 737 65 32 65 24 55 0 0 0 0													
19 20 737 65 32 65 24 55 0 0 0 0 20 21 737 65 32 65 24 55 0 0 0 0 21 22 737 65 32 65 24 55 0 0 0 0													
20 21 737 65 32 65 24 55 0 0 0 0 21 22 737 65 32 65 24 55 0 0 0 0													
21 22 737 65 32 65 24 55 0 0 0 0													
		22											

INPUT: TRAFFIC FOR LAeq1h Volum	es					K	ern COG I	Retrofi	it Noise E	Barrier		
•	23	24	737	65	32	65	24	55	0	0	0	0
	24	25	737	65	32	65	24	55	0	0	0	0
	25	26	737	65	32	65	24	55	0	0	0	0
	26	27	737	65	32	65	24	55	0	0	0	0
	27	28	737	65	32	65	24	55	0	0	0	0
	28	29	737	65	32	65	24	55	0	0	0	0
	29	30	737	65	32	65	24	55	0	0	0	0
	30	31										
SR14 (NB)	31	32	1085	65	47	65	35	55	0	0	0	0
	32	33	1085	65	47	65	35	55	0	0	0	0
	33	34	1085	65	47	65	35	55	0	0	0	0
	34	35	1085	65	47	65	35	55	0	0	0	0
	35	36	1085	65	47	65	35	55	0	0	0	0
	36	37	1085	65	47	65	35	55	0	0	0	0
	37	38	1085	65	47	65	35	55	0	0	0	0
	38	39	1085	65	47	65	35	55	0	0	0	C
	39	40	1085	65	47	65	35	55	0	0	0	C
	40	41	1085	65	47	65	35	55	0	0	0	0
	41	42	1085	65	47	65	35	55	0	0	0	0
	42	43	1085	65	47	65	35	55	0	0	0	0
	43	44	1085	65	47	65	35	55	0	0	0	0
	44	45	1085	65	47	65	35	55	0	0	0	0
	45	46	1085	65	47	65	35	55	0	0	0	0
	46	47	1085	65	47	65	35	55	0	0	0	0
	47	48	1085	65	47	65	35	55	0	0	0	C
	48	49	1085	65	47	65	35	55	0	0	0	0
	49	50	1085	65	47	65	35	55	0	0	0	0
	50	51	1085	65	47	65	35	55	0	0	0	0
	51	52	1085	65	47	65	35	55	0	0	0	C
	52	53	1085	65	47	65	35	55	0	0	0	0
	53	54	1085	65	47	65	35	55	0	0	0	0
	54	55	1085	65	47	65	35	55	0	0	0	0
	55	56	1085	65	47	65	35	55	0	0	0	0
	56	57	1085	65	47	65	35	55	0	0	0	C
	57	58										
On ramp fr Rosamond Blvd (NB)	0	116	213	35	9	35	7	35	0	0	0	0

INPUT: TRAFFIC FOR LAeq1h Volume	s					Ke	rn COG R	Retrofi	t Noise E	Barrier		
•	1	117	213	35	9	35	7	35	0	0	0	0
	2	118	213	35	9	35	7	35	0	0	0	0
	3	119	213	35	9	35	7	35	0	0	0	0
	4	120	213	35	9	35	7	35	0	0	0	0
	5	121	213	35	9	35	7	35	0	0	0	0
	6	122	213	35	9	35	7	35	0	0	0	0
	7	123										
Off ramp to Rosamond Blvd (NB)	8	124	724	35	31	35	23	35	0	0	0	0
	9	125	724	35	31	35	23	35	0	0	0	0
	10	126	724	35	31	35	23	35	0	0	0	0
	11	127	724	35	31	35	23	35	0	0	0	0
	12	128	724	35	31	35	23	35	0	0	0	0
	13	129	724	35	31	35	23	35	0	0	0	0
	14	130										
On ramp fr W Rosamond Blvd (SB)	15	131	496	35	21	35	16	35	0	0	0	0
	16	132	496	35	21	35	16	35	0	0	0	0
	17	133	496	35	21	35	16	35	0	0	0	0
	18	134	496	35	21	35	16	35	0	0	0	0
	19	135	496	35	21	35	16	35	0	0	0	0
	20	136	496	35	21	35	16	35	0	0	0	0
	21	137	496	35	21	35	16	35	0	0	0	0
	22	138	496	35	21	35	16	35	0	0	0	0
	23	139										-
Hillcrest Ave	0	140	0	0	0	0	0	0	0	0	0	0
	1	141										
Alexander Ave	2	142	0	0	0	0	0	0	0	0	0	0
	3	143										-
Haven St	4	144	0	0	0	0	0	0	0	0	0	0
	5	145										
Rosewood Ave to Milstead	6	146	0	0	0	0	0	0	0	0	0	0
	7	147	0	0	0	0	0	0	0	0	0	0
	8	148	0	0	0	0	0	0	0	0		0
	9	149										
Rosamond Blvd WB	10	150	1051	40	99	40	74	40	0	0	0	0
	11	151	798	40	54	40	41	40	0	0	0	0
	12	152	798	40	54	40	41	40	0			0

INPUT: TRAFFIC FOR LAeq1h \	/olumes					Ke	rn COG	Retrofi	t Noise B	arrier		
	13	153										
Rosamond Blvd EB	14	154	579	40	45	40	34	40	0	0	0	0
	15	155	684	40	57	40	43	40	0	0	0	0
	16	156	684	40	57	40	43	40	0	0	0	0
	17	157	684	40	57	40	43	40	0	0	0	0
	18	158	684	40	57	40	43	40	0	0	0	0
	19	159										
Laurel St to Poplar St	20	160	0	0	0	0	0	0	0	0	0	0
	21	161	0	0	0	0	0	0	0	0	0	0
	22	162	0	0	0	0	0	0	0	0	0	0
	23	163	0	0	0	0	0	0	0	0	0	0
	24	164										
C st to Poplar St	25	165	0	0	0	0	0	0	0	0	0	0
	26	166	0	0	0	0	0	0	0	0	0	0
	27	167	0	0	0	0	0	0	0	0	0	0
	28	168										
W B St	29	169	0	0	0	0	0	0	0	0	0	0
	30	170										
Oak St	31	171	0	0	0	0	0	0	0	0	0	0
	32	172										
Elm St	33	173	0	0	0	0	0	0	0	0	0	0
	34	174										
Orange St	35	175	0	0	0	0	0	0	0	0	0	0
	36	176										
Granite St	37	177	0	0	0	0	0	0	0	0	0	0
	38	178										

INPUT: RECEIVERS					1	<u></u>	T	Kern COC	Retrofit N	oise Barrie	er
LSA Associates, Inc.						16 Septem	nber 2010				
P. Ault						TNM 2.5	1501 2010				
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Kern C	OG R	etrofit Noise E	Barrier	1						
RUN:	Existir	ng									
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criteria	a	Active
			Х	Υ	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
R1	38	1	6,510,420.0	2,139,438.0	2,358.00	4.92	0.00	66	12.0	5.0) Y
R2	39	1	6,510,416.0	2,139,253.0	2,356.00	4.92	0.00	66	12.0	5.0) Y
R3	40	1	6,510,423.0	2,139,068.0	2,352.00	4.92	0.00	66	12.0	5.0	Y
R4	41	1	6,510,419.0	2,138,853.0	2,352.00	4.92	0.00	66	12.0	5.0	Y
R5	42	1	6,510,428.0	2,138,609.0	·		0.00	66	12.0	5.0	
R6	43	1	6,510,404.0	2,138,441.0	2,350.00	4.92	0.00	66	12.0	5.0	
R7	44	1	0,010,10110								
R8	45	1	-,,								
R9	46	1	-,,								
R10	47	1	-,,								
R11	48	1	-,,								
R12	49	1	-,,								
R13	50	1	-,,								
R14	51	1	0,010,01010								
R15	52	1	-,,		·						
R16	53	1	-,,								
R17	54	1	-,,								
R18	55	1	-,,		·						
R19	56	1	-,,								
R20	57	1	-,,								
R21	58	1	-,-:-,								
R22	59	1	6,509,845.0	2,136,598.0	2,330.00	4.92	0.00	66	12.0	5.0	Y

INPUT: RECEIVERS							Kern COG	Retrofit No	oise Barrier	
R23	60	6,509,879.0	2,136,489.0	2,334.00	4.92	0.00	66	12.0	5.0	Υ
R24	61	6,509,877.0	2,136,317.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R25	62	6,509,880.0	2,136,137.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R26	63	6,509,882.0	2,135,974.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R27	64	6,509,918.0	2,135,925.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R28	65	6,509,917.0	2,135,681.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R29	66	6,509,850.0	2,135,687.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R30	67	6,509,733.0	2,135,695.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R31	68	6,509,804.0	2,135,916.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R32	69	6,509,685.0	2,135,921.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R33	70	6,509,661.0	2,136,075.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R34	71	6,509,666.0	2,136,250.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R35	72	6,509,666.0	2,136,421.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R36	73	6,509,658.0	2,136,601.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R37	74	6,510,620.0	2,136,657.0	2,334.00	4.92	0.00	66	12.0	5.0	Υ
R38	75 <i>′</i>	6,510,597.0	2,136,307.0	2,332.00	4.92	0.00	66	12.0	5.0	Υ
R39	76	6,510,571.0	2,135,897.0	2,330.00	4.92	0.00	66	12.0	5.0	Υ
R40	77	6,510,492.0	2,135,775.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R41	78	6,510,549.0	2,135,716.0	2,327.00	4.92	0.00	66	12.0	5.0	Υ
R42	79	6,510,293.0	2,135,698.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R43	80	6,510,415.0	2,135,699.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R44	81	6,510,294.0	2,135,034.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R45	82	6,510,478.0	2,135,038.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R46	83	6,510,605.0	2,135,034.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R47	84	6,510,294.0	2,134,818.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R48	85	6,510,608.0	2,134,817.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R49	86	6,510,469.0	2,134,759.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R50	87	6,510,470.0	2,134,529.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R51	88	6,510,604.0	2,134,453.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R52	89	6,510,287.0	2,134,199.0	2,326.00	4.92	0.00	66	12.0	5.0	Υ
R53	90	6,510,467.0	2,134,214.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ
R54	91	6,510,592.0	2,134,219.0	2,328.00	4.92	0.00	66	12.0	5.0	Υ

IN OT. BARRIERO				ĺ			ì		Tterri G	700111	- HOISE B								
LSA Associates, Inc.					16 Sept	ember 2	2010												
P. Ault					TNM 2.	5													
INPUT: BARRIERS																			
PROJECT/CONTRACT:	Kern	COG Ret	rofit Noi	ise Barr	ier														
RUN:	Existi	ng																	
Barrier									Points										
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segm	ent			
		Min	Max	\$ per		Тор	Run:Rise				Х	Υ	Z	at	Seg H			_	Importan
				Unit	Unit	Width		Unit						Point	1	#Up	#Dn	Struct?	Reflec-
				Area	Vol.			Length						-	ment				tions?
		ft		\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft				
Barrier1	W	0.00	99.99	0.00)			0.00	0		· · ·	2,136,173.0	<u>'</u>				-	1	
									1		· · ·	2,136,181.0	<u>'</u>			_	_	1	
									2		· · ·	2,136,233.0	<u>'</u>				_	1	
									3			2,136,236.0				0	C	1	
Barrier2	W	0.00	00.00	0.00				0.00	5			2,136,186.0				0			
Barrierz	VV	0.00	99.99	0.00	J			0.00	6			2,136,280.0 2,136,280.0							
									7			2,136,323.0						'	-
									8			2,136,323.0	· ·						
									9	1		2,136,291.0	· ·						-
Barrier3	W	0.00	99.99	0.00)			0.00	10	1		2,136,356.0	,			0	C	,	+
				-					11	1		2,136,357.0					C)	
									12	1		2,136,456.0	,				C)	+
									13	1		2,136,456.0			0.00	0	C)	
									14	1:	5 6,510,349.0	2,136,368.0	2,332.00	15.00)				

LSA Associates, Inc.					16 September	2010
P. Ault					TNM 2.5	
INPUT: BUILDING ROWS						
PROJECT/CONTRACT:	Kern COG I	Retrofit Nois	e Barrie	er		
RUN:	Existing					
Building Row			Points	•		
Name	Average	Building	No.	Coordinates (ground)	
	Height	Percent		X	Y	Z
	ft	%		ft	ft	ft
Building1	15.00	80	1	6,510,460.0	2,139,539.0	2,358.00
			2	6,510,454.0	2,138,597.0	2,351.00
Building2	15.00	80	3	6,510,616.0	2,139,543.0	2,360.00
			4	6,510,615.0	2,138,604.0	2,352.00
Building3	15.00	80	5	6,510,381.0	2,138,476.0	2,350.00
			6	6,510,382.0	2,138,358.0	2,350.00
Building4	15.00	80	7	6,510,628.0	2,138,359.0	2,350.00
			8	6,510,627.0	2,138,486.0	2,350.00
Building5	15.00	80	9	6,510,529.0	2,138,235.0	2,348.00
			10	6,510,516.0	2,137,460.0	2,342.00
Building7	15.00	80	13	6,509,796.0	2,136,616.0	2,330.00
			14	6,509,886.0	2,136,614.0	2,330.00
Building8	15.00	80	15	6,509,908.0	2,136,506.0	2,334.00
			16	6,509,910.0	2,135,949.0	2,330.00
Building9	15.00	80	17	6,509,940.0	2,135,893.0	2,330.00
			18	6,509,607.0	2,135,888.0	2,328.00
Building10	15.00	80	19	6,509,934.0	2,135,729.0	2,328.00
			20	6,509,576.0	2,135,723.0	2,328.00
Building11	15.00	80	21	6,509,635.0	2,135,942.0	2,328.00
			22	6,509,632.0	2,136,678.0	2,332.00
Building12	15.00	80	23	6,510,605.0	2,136,671.0	2,334.00
			24	6,510,527.0	2,136,578.0	2,336.00
			41	6,510,535.0	2,136,363.0	2,332.00
			42	6,510,581.0	2,136,293.0	2,332.00

INPUT: BUILDING ROWS

01. 50.2500110						
Building13	15.00	80	25	6,510,270.0	2,135,716.0	2,328.00
			26	6,510,274.0	2,135,665.0	2,328.00
			43	6,510,442.0	2,135,670.0	2,326.00
Building14	15.00	80	27	6,510,491.0	2,135,758.0	2,326.00
			28	6,510,490.0	2,135,656.0	2,326.00
			44	6,510,610.0	2,135,656.0	2,328.00
			45	6,510,603.0	2,135,765.0	2,328.00
Building15	0.00	80	29	6,510,539.0	2,135,982.0	2,330.00
			30	6,510,535.0	2,135,853.0	2,330.00
			46	6,510,635.0	2,135,852.0	2,330.00
			47	6,510,631.0	2,135,969.0	2,330.00
Building16	0.00	80	31	6,510,266.0	2,135,001.0	2,326.00
			32	6,510,673.0	2,135,009.0	2,326.00
Building17	0.00	80	33	6,510,265.0	2,134,846.0	2,326.00
			34	6,510,679.0	2,134,845.0	2,326.00
Building18	0.00	80	37	6,510,271.0	2,134,718.0	2,326.00
			38	6,510,673.0	2,134,721.0	2,326.00
Building19	0.00	80	39	6,510,269.0	2,134,555.0	2,326.00
			40	6,510,682.0	2,134,572.0	2,326.00
Building20	0.00	20	48	6,510,270.0	2,134,421.0	2,326.00
			49	6,510,684.0	2,134,430.0	2,328.00
Building21	0.00	20	50	6,510,264.0	2,134,222.0	2,326.00
			51	6,510,685.0	2,134,231.0	2,326.00

APPENDIX E

TRAFFIC NOISE MODEL (TNM) 2.5 PRINTOUTS FOR FUTURE (2035) CONDITIONS WITH SOUND BARRIERS

						Kern COG	Retrofit N	oise Barrier			
						16 Septen	nber 2010				
						TNM 2.5					
						Calculate	d with TNN	1 2.5			
	Kern C	OG Retrofi	Noise Barrie	er							
	Future										
	SB1 - 6	ft					Average	pavement type	shall be use	d unless	•
							a State hi	ghway agenc	y substantiate	s the us	e
	68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
No.	#DUs	Existing	No Barrier					With Barrier			
		LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
			Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
						Sub'l Inc					minus
											Goal
		dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
38	3 1	0.0	68.1	66	68.1	12	Snd Lvl	62.3	5.8		5 0.
39) 1	0.0	70.2	66	70.2	. 12		63.4	6.8		5 1.
40) 1	0.0	70.0	66	70.0	12	Snd Lvl	63.3	6.7		5 1.
		0.0	70.8	66	70.8	12	Snd Lvl	64.5	6.3		5 1.
42	2 1	0.0	70.2	66	70.2	12	Snd Lvl	64.9	5.3		5 0
43	3 1	0.0	67.0			12	Snd Lvl	65.5	1.5		5 -3
		0.0	67.0					65.4			5 -3
		0.0						64.0	2.7	'	5 -2
					-				_		5 -3
									_		5 -3
								_	_		5 -2
											5 -3
											5 -2
		0.0									5 -2
									_		5 -3
		0.0									5 -4
		0.0									5 -4
		0.0									5 -3 5 -3
											5 -3 5 -2
											5 -3
58				60	59.0	12		57.3	1.7		J -3
	# DUs										
	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	Future SB1 - 6 68 deg No. #DUs 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1	Future SB1 - 6ft 68 deg F, 50% RH No. #DUs Existing LAeq1h dBA 38 1 0.0 39 1 0.0 40 1 0.0 41 1 0.0 42 1 0.0 43 1 0.0 44 1 0.0 45 1 0.0 46 1 0.0 47 1 0.0 48 1 0.0 49 1 0.0 49 1 0.0 50 1 0.0 50 1 0.0 51 1 0.0 52 1 0.0 53 1 0.0 54 1 0.0 55 1 0.0 55 1 0.0 56 1 0.0 57 1 0.0 58 1 0.0 # DUs Noise Receivers	Future SB1 - 6ft 68 deg F, 50% RH No. #DUS Existing LAeq1h LAeq1h LAeq1h Calculated	No. #DUS Existing No Barrier LAeq1h Calculated Crit'n	No. #Dus Existing No Barrier Calculated Crit'n Calculated Crit'n Calculated Calculated Crit'n Calculated Calculated Crit'n Calculated Calculated Crit'n Calculated Crit'n Calculated Calculated Crit'n Calculated Calculated Crit'n Calculated Calculated Calculated Calculated	No. #DUS Existing No Barrier Future SB1 - 6ft	No. #DUS Existing No Barrier LAeq1h Calculated Crit'n No. #DUs Existing No Barrier Calculated Crit'n Calculated No. HDUS Existing LAeq1h Calculated Crit'n Calculated Calculated Crit'n Calculated Calcul	No. #DUs Existing ABA ABA ABA ABA ABA ABB ABA ABB ABA ABB ABA ABB ABA ABB		
Max

Min

Avg

RESULTS: SOUND LEVELS

		dB	dB	dB
All Selected	21	0.6	2.8	6.8
All Impacted	11	1.5	3.9	6.8
All that meet NR Goal	5	5.3	6.2	6.8

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise B	arrier							
RUN:	Futur	е									
BARRIER DESIGN:	SB1 -	6ft									
Barriers											
Name	Туре	Heights al	long Barrie	r	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB1	W	6.00	6.00	6.00	2152	12913					
									Total Cost:		

RESULTS: SOUND LEVELS			<u></u>				Kern COG	Retrofit N	oise Barrier			
LSA Associates, Inc.							16 Septen	hber 2010				
P. Ault							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofi	Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB1 - 8	ft					Average	pavement type	shall be use	d unless	;
								a State hi	ghway agenc	y substantiate	es the us	ie
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier		-J	
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R1	38	3 1	0.0	68.1	66	68.1	12	Snd Lvl	61.5	6.6	į	5 1.6
R2	39	9 1	0.0	70.2	60	70.2	. 12	Snd Lvl	62.0	8.2		5 3.2
R3	40) 1	0.0	70.0	60	70.0	12	Snd Lvl	61.9	8.1		5 3.1
R4	41		0.0	70.8	60	70.8	12	Snd Lvl	63.0	7.8	,	5 2.8
R5	42	2 1	0.0	70.2	66	70.2	12	Snd Lvl	63.2	7.0	1	5 2.0
R6	43		0.0	67.0					64.1			5 -2.1
R7	44		0.0	67.0	66				64.4			5 -2.4
R8	45		0.0						62.5			5 -0.8
R9	46								63.8			5 -1.1
R10	47		0.0						65.5	_		5 -2.5
R11	48								62.9			5 -1.5
R12	49		0.0						63.2			5 -2.8
R13	50		0.0						62.4			5 -1.5
R14	51								61.0			5 -1.4
R15	52		0.0						59.1			5 -2.6
R16	53		0.0						56.7			5 -3.5
R17 R18	54 55		0.0						55.5 54.8			5 -3.2 5 -2.8
R19	56		0.0						53.7			5 -2.6
R20	57								55.5			5 -1.9
R21	58								57.0			5 -3.0
	30				00	39.0	12	1	37.0	2.0		-3.0
Dwelling Units		# DUS	Noise Re			4						

Max

Min

Avg

RESULTS: SOUND LEVELS

		dB	dB	dB
All Selected	21	1.5	3.9	8.2
II Impacted	11	2.5	5.2	8.2
All that meet NR Goal	5	6.6	7.5	8.2

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise Ba	arrier							
RUN:	Future	е									
BARRIER DESIGN:	SB1 -	8ft									
Barriers											
Name	Туре	Heights a	ong Barrie	r	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB1	W	8.00	8.00	8.00	215	2 17217	1				
									Total Cost:		

RESULTS: SOUND LEVELS		_				Kern COG	Retrofit No	oise Barrier		1	
LSA Associates, Inc.						16 Septen	hor 2010				
P. Ault						TNM 2.5	IDEI ZUIU				
P. Auit							d with TNM	1 2.5			
RESULTS: SOUND LEVELS						Guiouiuio					
PROJECT/CONTRACT:	Kern C	OG Retrofit	Noise Barrie	r							
RUN:	Future										
BARRIER DESIGN:	SB1 - 1	0ft							shall be use		
									y substantiate		ı
ATMOSPHERICS:	_ 68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver											
Name No.	#DUs		No Barrier					With Barrier			
		LAeq1h	LAeq1h	ı	Increase over	existing	Туре	Calculated	Noise Reduc	tion	
			Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
						Sub'l Inc					minus
											Goal
		dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R1 38						12		59.8			5 3.3
R2 39	9 1	0.0	70.2					60.7	9.5		5 4.5
R3 40		0.0						60.7			5 4.3
R4 4		0.0						61.7			5 4.1
R5 42								61.9			5 3.3
R6 43		0.0						62.5			5 -0.5
R7 44								62.9			5 -0.9
R8 45				66		12		61.5			5 0.2
R9 46			_	66	-	12		62.6			5 0.1
R10 47 R11 48		0.0						63.6 62.3			5 -0.6 5 -0.9
R12 49		0.0						62.9			5 -0.8
R13 50		0.0						61.3			5 -0.4
R14 5								60.0			5 -0.4
R15 52								58.4			5 -1.9
R16 53								56.2			5 -3.0
R17 54								55.0			5 -2.7
R18 55								54.5			5 -2.5
R19 56				66		12		53.1			5 -2.4
R20 57								55.0			5 -1.4
R21 58	3 1	0.0	59.0	66	59.0	12		56.9	2.1		5 -2.9
											1

Max

Min

Avg

RESULTS: SOUND LEVELS

		dB	dB	dB
All Selected	21	2.0	4.8	9.5
All Impacted	11	4.1	6.5	9.5
All that meet NR Goal	7	5.1	7.8	9.5

LSA Associates, Inc.				16 Septem	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise Ba	arrier							
RUN:	Future	е									
BARRIER DESIGN:	SB1 -	10ft									
Barriers											
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB1	W	10.00	10.00	10.00	2152	21521					_
									Total Cost:		

RESULTS: SOUND LEVELS							Kern COG	Retrofit N	oise Barrier			
LSA Associates, Inc.							16 Septen	hber 2010				
P. Ault							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofi	Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB1 - 1	2ft					Average	pavement type	shall be use	d unless	,
								a State hi	ghway agenc	y substantiate	es the us	е
ATMOSPHERICS:		68 deg	F, 50% RH	İ				of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier		J	
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R1	38	3 1	0.0	68.1	66	68.1	12	Snd Lvl	58.8	9.3	,	5 4.3
R2	39	9 1	0.0	70.2	: 66	70.2	. 12	Snd Lvl	58.8	11.4		5 6.4
R3	40) 1	0.0	70.0	66	70.0	12	Snd Lvl	58.6	11.4		5 6.4
R4	41	1 1	0.0	70.8	66	70.8	12	Snd Lvl	59.6	11.2		5 6.2
R5	42	2 1	0.0	70.2	: 66	70.2	12	Snd Lvl	60.0	10.2		5 5.3
R6	43	3 1	0.0	67.0					61.0	6.0	1	5 1.0
R7	44	4 1	0.0	67.0	66	67.0	12		61.4	5.6		5 0.0
R8	45		0.0	66.7					60.2	6.5		5 1.9
R9	46								61.7			5 1.0
R10	47		0.0						62.5			5 0.
R11	48								61.2			5 0.:
R12	49		0.0						62.4			5 -2.0
R13	50		0.0						59.7			5 1.3
R14	51								58.8			5 0.8
R15	52 53		0.0						57.1			5 -0.
R16 R17	54		0.0						55.1 54.0			5 -1.5 5 -1.
R17	55		0.0						54.0			5 -1.
R19	56		0.0						52.4			5 -1.
R20	57								54.4			5 -0.
R21	58								56.7			5 -2.
	30				. 00	5 59.0	12	1	30.7	2.0		32.1
Dwelling Units		# DUS	Noise Re									

Max

Min

Avg

RESULTS: SOUND LEVELS

		dB	dB	dB
All Selected	21	2.3	6.1	11.4
All Impacted	11	5.2	8.0	11.4
All that meet NR Goal	13	5.2	7.7	11.4

LSA Associates, Inc.				16 Septen	nber 2010					
P. Ault				TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS										
PROJECT/CONTRACT:	Kern	COG Retro	it Noise Ba	arrier						
RUN:	Future	е								
BARRIER DESIGN:	SB1 -	12ft								
Barriers										
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB1	W	12.00	12.00	12.00	2152	25825				
									Total Cost:	

RESULTS: SOUND LEVELS							Kern COG	Retrofit No	oise Barrier			
LSA Associates, Inc.							16 Septen	nber 2010				
P. Ault							TNM 2.5	d with TNM	105			
RESULTS: SOUND LEVELS							Calculate	awith INW	2.3			
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barrie	۵r							
RUN:		Future	oo naaaan	Noise Barrie								
BARRIER DESIGN:		SB2 - 6	ft					Average r	avement type	shall he use	d unless	I
									ghway agency			<u>.</u>
ATMOSPHERICS:		68 deg	F, 50% RH						ent type with			
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R22	59	1	0.0	60.6	66	60.6	12		59.4	1.2		5 -3.8
R23	60	1	0.0	64.3	66	64.3	12		63.0	1.3		5 -3.7
R24	61	1	0.0	59.8			12		58.3	1.5		5 -3.5
R25	62	1	0.0	62.0	66	62.0			60.1	1.9		5 -3.1
R26	63	1	0.0	63.8	66	63.8	12		61.8	2.0		5 -3.0
R27	64	1	0.0	68.2	2 66	68.2	12	Snd Lvl	65.1	3.1		5 -1.9
R28	65			70.5				Snd Lvl	65.9			5 -0.4
R29	66	1	0.0	66.4			12	Snd Lvl	63.4	3.0		5 -2.0
R30	67	1	0.0	61.4					59.6			5 -3.2
R31	68		0.0	62.7					60.0			5 -2.3
R32	69		0.0	58.5					57.4			5 -3.9
R33	70	1		59.8					58.2			5 -3.4
R34	71	1	0.0	58.4					57.1	1.3		5 -3.7
R35	72		0.0	59.1					57.7	1.4		5 -3.6
R36	73	1	0.0	59.3	66	59.3	12		58.7	0.6		5 -4.4
Dwelling Units		# DUs										
			Min	Avg	Max							
			dB	dB	dB							
All Selected		15										
All Impacted		3		3.6								
All that meet NR Goal		C	0.0	0.0	0.0)						

LSA Associates, Inc.					16 Septe	mber 2010					
P. Ault					TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG R	etrofit N	oise Ba	arrier						
RUN:	Future	е									
BARRIER DESIGN:	SB2 -	6ft									
Barriers											
Name	Туре	Heigh	ts along	Barrie	er	Length	If Wall	If Berm			Cost
		Min	Avg)	Max		Area	Volume	Тор	Run:Rise	
									Width		
		ft	ft		ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB3	W		0.00	0.00	0.0	0) (0			
SB2	W		6.00	6.00	6.0	1192	715	3			
										Total Cost:	

RESULTS: SOUND LEVELS	<u> </u>			1		·	Kern COG	Retrofit No	oise Barrier			
I CA Apposintes Inc							46 Comtain	 -				
LSA Associates, Inc.							16 Septen	1ber 2010				
P. Ault							TNM 2.5					
DECLII TO: COUND LEVEL C							Calculated	d with TNM	1 2.5			
RESULTS: SOUND LEVELS		16	00 0									
PROJECT/CONTRACT:			OG Retrofii	Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB2 - 8	ft						pavement type			
									ghway agenc			е
ATMOSPHERICS:		68 deg	F, 50% RH	ļ				of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Type	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R22	59	1	0.0	60.6	66	60.6	12		59.3	1.3		5 -3.7
R23	60	1	0.0	64.3	66	64.3	12		61.9	2.4		5 -2.6
R24	61	1	0.0	59.8	66	59.8	12		57.9	1.9		5 -3.
R25	62	1	0.0	62.0	66	62.0	12		59.5	2.5		5 -2.5
R26	63	1	0.0	63.8	66	63.8	12		61.1	2.7		5 -2.3
R27	64	1	0.0	68.2	2 66	68.2	12	Snd Lvl	63.4	4.8		5 -0.2
R28	65	1	0.0	70.5	66	70.5	12	Snd Lvl	65.0	5.5		5 0.5
R29	66	1	0.0	66.4	66	66.4	12	Snd Lvl	63.0	3.4		5 -1.6
R30	67	1	0.0	61.4	66	61.4	12		59.3	2.1		5 -2.9
R31	68	1	0.0	62.7	66	62.7	12		59.5	3.2		5 -1.8
R32	69	1	0.0	58.5	66	58.5	12		56.9	1.6		5 -3.4
R33	70	1	0.0	59.8	66	59.8	12		57.7	2.1		5 -2.9
R34	71	1	0.0	58.4	66	58.4	12		57.3	1.1		5 -3.9
R35	72	1	0.0	59.1	66	59.1	12		57.6	1.5		5 -3.5
R36	73	1	0.0	59.3	66	59.3	12		58.7	0.6		5 -4.4
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		15	0.6	2.4	5.5	5						
All Impacted		3	3.4	4.6	5.5	5						
All that meet NR Goal		1	5.5	5.5	5.5	5						

LSA Associates, Inc.				16 Septen	nber 2010					
P. Ault				TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS										
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise B	arrier						
RUN:	Future	е								
BARRIER DESIGN:	SB2 -	8ft								
Barriers										
Name	Туре	Heights a	long Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB3	W	0.00	0.00	0.00	0	0				
SB2	W	8.00	8.00	8.00	1192	9537	,			
									Total Cost:	

RESULTS: SOUND LEVELS	<u> </u>			1			Kern COG	Retrofit No	oise Barrier			
I SA Apposintes Inc							16 Comton	hor 2040				
LSA Associates, Inc.							16 Septen	1ber 2010				
P. Ault							TNM 2.5	d with TNM	125			
RESULTS: SOUND LEVELS							Calculated		1 2.3			
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barrie	ar ar							
RUN:		Future										
BARRIER DESIGN:		SB2 - 1	Oft					Average r	pavement type	shall be use	d unless	
]							ghway agenc			
ATMOSPHERICS:		68 deg	F, 50% RH						ent type with			
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier	-		
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R22	59	1	0.0	60.6	66	60.6			58.3	2.3		5 -2.7
R23	60	1	0.0	64.3	66	64.3	12		60.8	3.5		5 -1.5
R24	61	1	0.0	59.8	66	59.8	12		57.0	2.8		5 -2.2
R25	62		0.0	62.0					58.6			5 -1.6
R26	63	1	0.0	63.8	66	63.8	12		60.3	3.5		5 -1.5
R27	64	1	0.0	68.2	2 66	68.2	12		62.0	6.2	!	5 1.2
R28	65	1	0.0	70.5	66	70.5	12		64.5	6.0)	5 1.0
R29	66	1							62.5			5 -1.1
R30	67	1	0.0	61.4					58.9			5 -2.5
R31	68		0.0						58.7	4.0		5 -1.0
R32	69		0.0						56.2			5 -2.7
R33	70	1	0.0						57.3			5 -2.5
R34	71	1	0.0						56.7			5 -3.3
R35	72		0.0						57.4			5 -3.3
R36	73	1	0.0	59.3	66	59.3	12		58.6	0.7	'	5 -4.3
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		15	0.7	3.1								
All Impacted		3	3.9	5.4	6.2	2						
All that meet NR Goal		2	6.0	6.1	6.2	2						

LSA Associates, Inc.				16 Septen	nber 2010					
P. Ault				TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS										
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise B	arrier						
RUN:	Future	е								
BARRIER DESIGN:	SB2 -	10ft								
Barriers										
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB3	W	0.00	0.00	0.00	0	0				
SB2	W	10.00	10.00	10.00	1192	11921				
									Total Cost:	

RESULTS: SOUND LEVELS							Kern COG	Retrofit No	oise Barrier			
LSA Associates, Inc.							16 Septen	nber 2010				
P. Ault							TNM 2.5	1 TAIR				
RESULTS: SOUND LEVELS							Calculate	d with TNN	1 2.5			
PROJECT/CONTRACT:		Korn C	OG Patrofit	Noise Barrie	\r							
RUN:		Future	OG Reli olil	. Noise Dairie	7 1							
BARRIER DESIGN:		SB2 - 1	2f+					Avorago r	pavement type	s chall bo uco	d unloce	
BARRIER DESIGN.		JB2 - 1	211						ghway agency			2
ATMOSPHERICS:		68 deg	F, 50% RH						ent type with			_
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier	<u> </u>	<u>'</u>	
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R22	59	1	0.0	60.6	66	60.6	12		58.0	2.6		5 -2.4
R23	60	1	0.0	64.3	66	64.3	12		59.8	4.5		5 -0.5
R24	61	1	0.0	59.8			12		56.5	3.3		5 -1.7
R25	62	1	0.0	62.0	66	62.0			57.8	4.2		5 -0.8
R26	63	1	0.0	63.8	66	63.8	12		59.2	4.6		5 -0.4
R27	64	1	0.0	68.2	2 66	68.2	12	Snd Lvl	59.9	8.3		5 3.3
R28	65	1		70.5					63.4			5 2.1
R29	66	1	0.0	66.4			12	Snd Lvl	61.7			5 -0.3
R30	67	1	0.0	61.4					58.2			5 -1.8
R31	68		0.0	62.7					57.1	5.6		5 0.6
R32	69		0.0	58.5					54.9			5 -1.4
R33	70	1		59.8					56.2			5 -1.4
R34	71	1	0.0	58.4					55.8			5 -2.4
R35	72	1	0.0	59.1					56.7	2.4		5 -2.6
R36	73	1	0.0	59.3	66	59.3	12		58.3	1.0		5 -4.0
Dwelling Units		# DUs										
			Min	Avg	Max							
			dB	dB	dB							
All Selected		15										
All Impacted		3		6.7								
All that meet NR Goal		3	5.6	7.0	8.3	3						

LSA Associates, Inc.				16 Septen	nber 2010					
P. Ault				TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS										
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise Ba	arrier						
RUN:	Future	е								
BARRIER DESIGN:	SB2 -	12ft								
Barriers										
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB3	W	0.00	0.00	0.00	0	0				
SB2	W	12.00	12.00	12.00	1192	14306				
									Total Cost:	

RESULTS: SOUND LEVELS							Kern COG	Retrofit No	oise Barrier			
LSA Associates, Inc.							16 Septen	nber 2010				
P. Ault							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofi	t Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB2 - 1	4ft						pavement type			
									ghway agenc			
ATMOSPHERICS:		68 deg	F, 50% RF	l	ı			of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Type	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R22	59	1	0.0	60.6	60	60.6	12		57.6	3.0	Ę	5 -2.0
R23	60	1	0.0	64.3	66	64.3	12		59.4	4.9	5	5 -0.1
R24	61	1	0.0	59.8	60	59.8	12		56.1	3.7	5	5 -1.3
R25	62	: 1	0.0	62.0	66	62.0	12		57.4	4.6	5	5 -0.4
R26	63	1	0.0	63.8	66	63.8	12		58.7	5.1	5	5 0.1
R27	64	. 1	0.0	68.2	. 60	68.2	12	Snd Lvl	58.8	9.4		5 4.4
R28	65	1	0.0	70.5	60	70.5	12	Snd Lvl	63.1	7.4	Ę	5 2.4
R29	66	1	0.0	66.4	. 60	66.4	12	Snd Lvl	61.4	5.0	5	5 0.0
R30	67	1	0.0	61.4	. 60	61.4	12		58.0	3.4	. 5	-1.6
R31	68	1	0.0	62.7	66	62.7	12		56.3	6.4		5 1.4
R32	69	1	0.0	58.5	66	58.5	12		54.3	4.2		5 -0.8
R33	70	1	0.0	59.8	66	59.8	12		55.7	4.1	5	5 -0.9
R34	71	1	0.0	58.4	. 60	58.4	12		55.3	3.1	5	-1.9
R35	72	: 1	0.0	59.1	66	59.1	12		56.4	2.7	5	5 -2.3
R36	73	1	0.0	59.3	60	59.3	12		58.1	1.2		5 -3.8
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		15	1.2	4.5	9.4	4						
All Impacted		3	5.0	7.3	9.4	4						
All that meet NR Goal		5	5.0	6.7	9.4	4						

LSA Associates, Inc.				16 Septen	nber 2010					
P. Ault				TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS										
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise Ba	arrier						
RUN:	Future	е								
BARRIER DESIGN:	SB2 -	14ft								
Barriers										
Name	Type	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB3	W	0.00	0.00	0.00	0	0				
SB2	W	14.00	14.00	14.00	1192	16690				
									Total Cost:	

RESULTS: SOUND LEVELS							Kern COG	Retrofit No	oise Barrier			
LSA Associates, Inc.							16 Septen	nber 2010				
P. Ault							TNM 2.5	1 '41 - TAIR				
RESULTS: SOUND LEVELS							Calculated	d with TNM	1 2.5			
PROJECT/CONTRACT:		Korn C	OG Potrofit	Noise Barrie	\r							
RUN:		Future	OG Reli Olli	. Noise Dairie	71							
BARRIER DESIGN:		SB2 - 1	6ft					Avorago r	avement type	s chall bo uco	d unloce	
BARRIER DESIGN.		362 - 1	UIL						ghway agency			3
ATMOSPHERICS:		68 deg	F, 50% RH						ent type with			[
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier	1		
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R22	59	1	0.0	60.6	66	60.6	12		57.3	3.3		5 -1.7
R23	60	1	0.0	64.3	66	64.3	12		59.1	5.2		5 0.2
R24	61	1	0.0	59.8	66	59.8	12		55.8	4.0		5 -1.0
R25	62	1	0.0	62.0	66	62.0	12		57.0	5.0		5 0.0
R26	63	1	0.0	63.8	66	63.8	12		58.3	5.5		5 0.5
R27	64	1	0.0	68.2	66	68.2	. 12	Snd Lvl	58.0	10.2		5 5.2
R28	65	1	0.0	70.5			12	Snd Lvl	62.9			5 2.6
R29	66	1	0.0	66.4			12	Snd Lvl	61.2			5 0.2
R30	67	1	0.0	61.4					57.8			5 -1.4
R31	68		0.0	62.7					55.7	7.0		5 2.0
R32	69	1	0.0	58.5					53.8			5 -0.3
R33	70	1		59.8					55.3			5 -0.5
R34	71	1	0.0	58.4					54.8			5 -1.4
R35	72	1	0.0	59.1					56.2			5 -2.1
R36	73	1	0.0	59.3	66	59.3	12		58.0	1.3		5 -3.7
Dwelling Units		# DUs										
			Min	Avg	Max							
			dB	dB	dB							
All Selected		15				!						
All Impacted		3		7.7								
All that meet NR Goal		7	5.0	6.5	10.2	!						

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise B	arrier							
RUN:	Futur	е									
BARRIER DESIGN:	SB2 -	16ft									
Barriers											
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB3	W	0.00	0.00	0.00	(0 0					
SB2	W	16.00	16.00	16.00	1192	19074					
									Total Cost:		

											İ	
LSA Associates, Inc.							16 Septen	 nber 2010				
P. Ault							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofit	t Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB3 - 6	ft					Average p	avement type	shall be use	d unless	
								a State hi	ghway agenc	y substantiate	s the use	
ATMOSPHERICS:		68 deg	F, 50% RH	l				of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R37	74	1	0.0	61.5	66	61.5	12		61.5	0.0		5 -5.
R38	75	1	0.0	58.7	66	58.7	12		58.4	0.3		5 -4.
R39	76	1	0.0	61.1	66	61.1	12		59.5	1.6	;	5 -3.
R40	77	1	0.0	62.6	66	62.6	12		60.4	2.2	:	5 -2.
R41	78	1	0.0	61.0	66	61.0	12		59.1	1.9		5 -3.
R42	79	1	0.0	68.0	66	68.0	12	Snd Lvl	63.1	4.9		5 -0.
R43	80	1	0.0	63.6	66	63.6	12		60.8	2.8	:	5 -2.
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		7	0.0	2.0	4.9							
All Impacted		1	4.9	4.9	4.9							
All that meet NR Goal		0	0.0	0.0	0.0							

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Reti	ofit Noise B	arrier							
RUN:	Futur	е									
BARRIER DESIGN:	SB3 -	6ft									
Barriers											
Name	Туре	Heights	along Barrie	r	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB3	W	6.0	00 6.00	6.00	602	3614					
SB2	W	0.0	0.00	0.00	0	0					
Barrier3	W	15.0	00 15.00	15.00	308	4621					
Barrier2	W	15.0	00 15.00	15.00	190	2856					
Barrier1	W	15.0	00 15.00	15.00	248	3717					
									Total Cost:		

LSA Associates, Inc.							16 Septen	nber 2010				
P. Ault							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB3 - 8	ft					Average	pavement type	shall be use	ed unless	;
								a State hi	ghway agenc	y substantiat	es the us	e
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	ction	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R37	74	1	0.0	61.5	66	61.5	12		61.5	0.0)	5 -5.0
R38	75	1	0.0	58.7	66	58.7	12		58.3	0.4		5 -4.6
R39	76	1	0.0	61.1	66	61.1	12		59.2	1.9		5 -3.1
R40	77	1	0.0	62.6	66	62.6	12		60.2	2.4		5 -2.6
R41	78	1	0.0	61.0	66	61.0	12		58.9	2.1		5 -2.9
R42	79	1	0.0	68.0	66	68.0	12	Snd Lvl	62.2	5.8	3	5 0.8
R43	80	1	0.0	63.6	66	63.6	12		60.2	3.4		5 -1.6
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		7	0.0	2.3	5.8							
All Impacted		1	5.8	5.8	5.8							
All that meet NR Goal		1	5.8	5.8	5.8							

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Retr	ofit Noise B	arrier							
RUN:	Futur	е									
BARRIER DESIGN:	SB3 -	8ft									
Barriers											
Name	Туре	Heights	along Barrie	er	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB3	W	8.0	00.8	8.00	602	4818					
SB2	W	0.0	0.00	0.00	0	0					
Barrier3	W	15.0	00 15.00	15.00	308	4621					
Barrier2	W	15.0	00 15.00	15.00	190	2856					
Barrier1	W	15.0	00 15.00	15.00	248	3717					
									Total Cost:		

LSA Associates, Inc.							16 Septen	nber 2010				
P. Ault							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofit	t Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB3 - 1	Oft .						pavement type			
									ghway agenc)
ATMOSPHERICS:		68 deg	F, 50% RH	[of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R37	74	1	0.0	61.5	66	61.5	12		61.5	0.0		5 -5.0
R38	75	1	0.0	58.7	66	58.7	12		58.2	0.5		5 -4.5
R39	76	1	0.0	61.1	66	61.1	12		59.0	2.1		5 -2.9
R40	77	1	0.0	62.6	66	62.6	12		59.8	2.8		5 -2.2
R41	78		0.0	61.0	66	61.0	12		58.5	2.5		5 -2.5
R42	79	1	0.0	68.0	66	68.0	12	Snd Lvl	61.7	6.3		5 1.3
R43	80	1	0.0	63.6	66	63.6	12		59.5	4.1		5 -0.9
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		7	0.0	2.6	6.3	3						
All Impacted		1	6.3	6.3	6.3	3						
All that meet NR Goal		1	6.3	6.3	6.3	3						

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Reti	rofit Noise E	Barrier							
RUN:	Futur	е									
BARRIER DESIGN:	SB3 -	10ft									
Barriers											
Name	Туре	Heights	along Barri	er	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB3	W	10.0	00 10.0	0 10.00	602	6023					
SB2	W	0.0	0.0	0.00	0	0					
Barrier3	W	15.0	00 15.0	0 15.00	308	4621					
Barrier2	W	15.0	00 15.0	0 15.00	190	2856					
Barrier1	W	15.0	00 15.0	0 15.00	248	3717					
									Total Cost:		

LSA Associates, Inc.							16 Septen	nber 2010					
P. Ault							TNM 2.5						
							Calculate	d with TNN	1 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:			OG Retrofit	Noise Barrie	er								
RUN:		Future											
BARRIER DESIGN:		SB3 - 1	2ft					Average p	pavement type	shall be use	d unles	s	
								a State hi	ghway agency	y substantiat	s the u	se	
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.		
Receiver													
Name	No.	#DUs	Existing	No Barrier					With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcula	ited
							Sub'l Inc					minus	
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
R37	74	1	0.0	61.5	66	61.5	12		61.5	0.0)	5	-5.0
R38	75	1	0.0	58.7	66	58.7	12		58.1	0.6		5	-4.4
R39	76	1	0.0	61.1	66	61.1	12		58.4	2.7		5	-2.3
R40	77	1	0.0	62.6	66	62.6	12		59.2	3.4		5	-1.6
R41	78		0.0	61.0			12	!	58.1	2.9		5	-2.1
R42	79	1	0.0	68.0	66	68.0	12	Snd Lvl	60.6	7.4		5	2.4
R43	80	1	0.0	63.6	66	63.6	12		58.5	5.1		5	0.
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		7	0.0	3.2	7.4								
All Impacted		1	7.4	7.4	7.4								
All that meet NR Goal		2	5.1	6.2	7.4								

LSA Associates, Inc.				16 Septer	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Ret	rofit Noise	Barrier							
RUN:	Future	е									
BARRIER DESIGN:	SB3 -	12ft									
Barriers											
Name	Туре	Heights	along Barr	ier	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB3	W	12.	00 12.0	0 12.00	602	7228					
SB2	W	0.	0.0	0.00	0	0					
Barrier3	W	15.	00 15.0	0 15.00	308	4621					
Barrier2	W	15.	00 15.0	0 15.00	190	2856					-
Barrier1	W	15.	00 15.0	0 15.00	248	3717					-
									Total Cost:		

LSA Associates, Inc.							16 Septen	nber 2010				
P. Ault							TNM 2.5					
							Calculate	d with TNM	2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB3 - 1	4ft					Average p	avement type	shall be use	d unless	
								a State hig	jhway agenc	y substantiate	s the use	į
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R37	74	1	0.0	61.5	6	6 61.5	12		61.5	0.0		5 -5.0
R38	75	1	0.0	58.7	6	6 58.7	12		58.0	0.7		5 -4.3
R39	76	1	0.0	61.1	6	61.1	12		58.1	3.0	,	5 -2.0
R40	77	1	0.0	62.6	6	62.6	12		58.9	3.7		5 -1.3
R41	78	1	0.0	61.0	6	61.0	12		57.9	3.1		5 -1.9
R42	79	1	0.0	68.0	6	68.0	12	Snd Lvl	60.2	7.8		5 2.8
R43	80	1	0.0	63.6	6	63.6	12		58.1	5.5		5 0.5
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		7	0.0	3.4	7.3	8						
All Impacted		1	7.8	7.8	7.8	8						
All that meet NR Goal		2	5.5	6.6	7.8	8						

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Retro	it Noise Ba	arrier							
RUN:	Futur	е									
BARRIER DESIGN:	SB3 -	14ft									
Barriers											
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB3	W	14.00	14.00	14.00	602	8432					
SB2	W	0.00	0.00	0.00	0	0					
Barrier3	W	15.00	15.00	15.00	308	4621					
Barrier2	W	15.00	15.00	15.00	190	2856					
Barrier1	W	15.00	15.00	15.00	248	3717					
									Total Cost:		

								1			1	
LSA Associates, Inc.							16 Septen	nber 2010				
P. Ault							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofit	t Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB3 - 1	6ft					Average p	pavement type	shall be use	d unless	
								a State hi	ghway agenc	y substantiate	es the use	:
ATMOSPHERICS:		68 deg	F, 50% RH	ĺ				of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	ction	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R37	74	1	0.0	61.5	66	61.5	12		61.5	0.0)	5 -5.0
R38	75	1	0.0	58.7	66	58.7	12		57.9	8.0	3	5 -4.2
R39	76	1	0.0	61.1	66	61.1	12		58.0	3.1		5 -1.9
R40	77	1	0.0	62.6	66	62.6	12		58.8	3.8	3	5 -1.2
R41	78	1	0.0	61.0	66	61.0	12		57.8	3.2		5 -1.8
R42	79	1	0.0	68.0	66	68.0	12	Snd Lvl	59.9	8.1		5 3.1
R43	80	1	0.0	63.6	66	63.6	12		57.8	5.8	3	5 0.8
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		7	0.0	3.5	8.1							
All Impacted		1	8.1	8.1	8.1							
All that meet NR Goal		2	5.8	6.9	8.1							

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Reti	rofit Noise E	Barrier							
RUN:	Futur	е									
BARRIER DESIGN:	SB3 -	16ft									
Barriers											
Name	Туре	Heights	along Barri	er	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB3	W	16.0	00 16.0	0 16.00	602	9637					
SB2	W	0.0	0.0	0.00	0	0					-
Barrier3	W	15.0	00 15.0	0 15.00	308	4621					
Barrier2	W	15.0	00 15.0	0 15.00	190	2856					
Barrier1	W	15.0	00 15.0	0 15.00	248	3717					
									Total Cost:		

R51	88	1	0.0	59.2	2 66	59.2	. 12		57.0	2.2		5 -2.8
R50	87		0.0						58.9			5 -2.0
R49	86		0.0	_					59.3			5 -1.9
R48	85		0.0						56.7			5 -2.9
R47	84		0.0	_		-			63.8	_		5 1.4
R46	83		0.0	59.1					57.5			5 -3.4
R45	82	1	0.0	62.3			12		59.9	2.4	Į.	5 -2.6
R44	81	1	0.0	70.5	66	70.5	12	Snd Lvl	65.3	5.2		5 0.2
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
												Goal
							Sub'l Inc					minus
			-	Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	1	Goal	Calculated
Hame	110.	# D 03		LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
Receiver Name	No.	#DUs	Existing	No Barrier					With Barrier			
ATMOSPHERICS:		oo aeg	F, 50% RH		+	+	-	or a differ	ent type with	approval of F	HVVA.	
4.TM000UED100		00 1	E 500/ DII						ghway agency			
BARRIER DESIGN:		SB4 - 6	ft						pavement type			
RUN:		Future										
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barrie	er							
RESULTS: SOUND LEVELS												
							Calculated	d with TNM	1 2.5			
P. Ault							TNM 2.5					
LSA Associates, Inc.							16 Septem	ber 2010				

11

3

3

1.6

5.0

5.0

3.3

5.5

5.5

6.4

6.4

6.4

All Selected

All Impacted

All that meet NR Goal

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise Ba	arrier							
RUN:	Future	е									
BARRIER DESIGN:	SB4 -	6ft									
Barriers											
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB4	W	6.00	6.00	6.00	1150	6900					
									Total Cost:		

RESULTS: SOUND LEVELS							Nern COG	Ketrofit No	oise Barrier			
LSA Associates, Inc.							16 Septen	 ber 2010				
P. Ault							TNM 2.5					
							Calculated	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barrie	r							
RUN:		Future										
BARRIER DESIGN:		SB4 - 8	ft					Average	pavement type	shall be use	d unless	
								a State hi	ghway agenc	y substantiate	s the use	
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier		'	
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R44	81	1	0.0	70.5	66	70.5	12	Snd Lvl	64.7	5.8	5	0.8
R45	82	1	0.0	62.3	66	62.3	12		59.6	2.7	5	-2.3
R46	83	1	0.0	59.1	66	59.1	12		57.3	1.8	5	-3.2
R47	84	1	0.0	70.2	66	70.2	12	Snd Lvl	63.0	7.2	5	2.2
R48	85		0.0	58.8			12		56.4	2.4	. 5	-2.6
R49	86	1	0.0	62.4					58.8	3.6	_	
R50	87		0.0	61.9					58.3			
R51	88		0.0						56.6	_		
R52	89								64.2			
R53	90		0.0	00					59.3			
R54	91	1	0.0	59.2	66	59.2	12		56.6	2.6	5	-2.4
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
		1	dB	dB	dB							

3

3

5.5

5.5

6.2

6.2

7.2

7.2

All Impacted

All that meet NR Goal

LSA Associates, Inc.				16 Septen	nber 2010					
P. Ault				TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS										
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise B	arrier						
RUN:	Future	е								
BARRIER DESIGN:	SB4 -	8ft								
Barriers										
Name	Туре	Heights a	long Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB4	W	8.00	8.00	8.00	1150	9200				
									Total Cost:	

RESULTS: SOUND LEVELS						Kern COG	Retrotit No	oise Barrier			
LSA Associates, Inc.						16 Septen	 nber 2010				
P. Ault						TNM 2.5					
						Calculated	d with TNN	1 2.5			
RESULTS: SOUND LEVELS											
PROJECT/CONTRACT:	Kern C	OG Retrofi	t Noise Barrie	er							
RUN:	Future										
BARRIER DESIGN:	SB4 - 1	0ft					Average	pavement type	shall be use	d unless	
							a State hi	ghway agency	y substantiate	s the use	
ATMOSPHERICS:	68 deg	F, 50% RH	ĺ				of a differ	ent type with	approval of F	HWA.	
Receiver											
Name No.	#DUs	Existing	No Barrier					With Barrier		'	
		LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
			Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
						Sub'l Inc					minus
											Goal
		dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R44 8	31 ·	0.0	70.5	66	70.5	12	Snd Lvl	64.1	6.4		5 1.4
R45 8	32	0.0	62.3	66	62.3	12		59.2	3.1	į.	5 -1.9
R46 8	33	0.0	59.1	66	59.1	12		57.1	2.0	į	-3.0
R47 8	34	0.0	70.2	66	70.2	12	Snd Lvl	62.1	8.1	į	5 3.1
R48 8	35 °	0.0	58.8			12		56.2	2.6		5 -2.4
R49 8	36 <i>′</i>	0.0	62.4					58.2	4.2		-0.8
	•	0.0	61.9					57.7	4.2		5 -0.8
		0.0	59.2					56.3	2.9		-2.1
	39 ·	0.0						63.7	6.0		5 1.0
		0.0						59.0			5 -1.4
R54 9	91 -	0.0	59.2	66	59.2	12		56.4	2.8		5 -2.2
Dwelling Units	# DUs	Noise Re	duction								
		Min	Avg	Max							
	1	dB	dB	dB							
		ub	ub	uD							

8.1

8.1

6.8

6.8

6.0

6.0

3

3

All Impacted

All that meet NR Goal

LSA Associates, Inc.				16 Septem	ber 2010					
P. Ault				TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS										
PROJECT/CONTRACT:	Kern (COG Retro	fit Noise Ba	arrier						
RUN:	Future	е								
BARRIER DESIGN:	SB4 -	10ft								
Barriers										
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB4	W	10.00	10.00	10.00	1150	11500				
									Total Cost:	

			dB	Avg dB	dB							
Dwelling Units		# DUs	Noise Red	i	Max							
R54	91	1	0.0	59.2	: 66	59.2	12		55.6	3.6		5 -1
R53	90	1	0.0						58.2			5 -0
R52	89	1	0.0	69.7	66	69.7	12	Snd Lvl	63.0	6.7		5 1
R51	88	1	0.0	59.2	66	59.2	. 12		55.4	3.8		5 -1
R50	87	1	0.0	61.9	66	61.9	12		56.7	5.2		5 0
R49	86	1	0.0	62.4	. 66				57.3	5.1		5 0
R48	85	1	0.0						55.4			5 -1
R47	84	1	0.0						60.9	_		5 4
R46	83	•	0.0						56.6			5 -2
R45	82	1							58.6			5 -1
R44	81	1	0.0					Snd Lvl	63.4			5 2
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
							Sub'l Inc					minus Goal
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
				LAeq1h	1	Increase over	, -	Туре	Calculated	Noise Reduc	1	
Name	No.	#DUs		No Barrier					With Barrier			
Receiver												
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
								a State hi	ghway agenc	y substantiate	s the use	!
BARRIER DESIGN:		SB4 - 1	2ft					Average	pavement type	shall be use	d unless	
RUN:		Future										
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barrie	er							
RESULTS: SOUND LEVELS							Calculate		1 2.5			
P. Auit							Calculate	d with TNN	125			
LSA Associates, Inc. P. Ault							16 Septen	iber 2010				
0.4.4							40.0					
RESULTS: SOUND LEVELS					1		Kern COG	Kellolli N	oise Barrier		1	

9.3

9.3

9.3

5.0

7.7

6.7

11

3

5

2.5

6.7

5.1

All Selected

All Impacted

All that meet NR Goal

LSA Associates, Inc.				16 Septem	nber 2010					
P. Ault				TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS										
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise Ba	arrier						
RUN:	Future	е								
BARRIER DESIGN:	SB4 -	12ft								
Barriers										
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB4	W	12.00	12.00	12.00	1150	13800				
									Total Cost:	

RESULTS: SOUND LEVELS							Kern COG	Retrofit No	oise Barrier			
LSA Associates, Inc.							16 Septen	her 2010				
P. Ault							TNM 2.5	1501 2010				
,								d with TNM	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB4 - 1	4ft					Average p	pavement type	shall be use	d unless	
								a State high	ghway agency	y substantiate	s the use	
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R44	81	1	0.0	70.5	66	70.5	12	Snd Lvl	63.1	7.4		5 2.
R45	82	1	0.0	62.3	66	62.3	12		58.3	4.0	Į į	5 -1.
R46	83	1	0.0	59.1	66	59.1	12		56.4	2.7	į	-2.
R47	84		0.0	70.2	66	70.2	12	Snd Lvl	60.3	9.9		5 4.
R48	85		0.0	58.8					55.0			5 -1.
R49	86	1	0.0	_					56.8			5 0.
R50	87	1	0.0						56.2			5 0.
R51	88		0.0						55.0			5 -0.
R52	89		0.0						62.8			5 1.
R53	90		0.0						57.8			5 -0.
R54	91	1	0.0	59.2	66	59.2	12		55.3	3.9		5 -1.
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		11	2.7	5.4	9.9							
All Impacted		3	6.9	8.1	9.9	1						

5.6

7.1

9.9

All that meet NR Goal

LSA Associates, Inc.				16 Septen	nber 2010						
P. Ault				TNM 2.5							
RESULTS: BARRIER DESCRIPTIONS											
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise Ba	arrier							
RUN:	Future	е									
BARRIER DESIGN:	SB4 -	14ft									
Barriers											
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost	
		Min	Avg	Max		Area	Volume	Тор	Run:Rise		
								Width			
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$	
SB4	W	14.00	14.00	14.00	1150	16101					
									Total Cost:		

RESULTS: SOUND LEVELS							Kern COG	Retrofit N	oise Barrier			
LSA Associates, Inc.							16 Septen	 nber 2010				
P. Ault							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Kern C	OG Retrofit	Noise Barrie	er							
RUN:		Future										
BARRIER DESIGN:		SB4 - 1	6ft					Average	pavement type	shall be use	d unless	
								a State hi	ghway agenc	y substantiate	s the use	•
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier	-		
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
R44	81	1	0.0	70.5	66	70.5	5 12	Snd Lvl	62.9	7.6		5 2.0
R45	82	1	0.0	62.3	66	62.3	12		58.2	4.1		5 -0.9
R46	83	1	0.0	59.1	66	59.1	12		56.2	2.9	,	5 -2.
R47	84	1	0.0	70.2	66	70.2	2 12	Snd Lvl	59.9	10.3		5 5.3
R48	85	1	0.0	58.8	66	58.8	12		54.8	4.0		5 -1.0
R49	86		0.0						56.5			5 0.9
R50	87		0.0						55.8		,	5 1.
R51	88		0.0						54.8			5 -0.0
R52	89		0.0						62.6			5 2.
R53	90		0.0						57.6			5 0.0
R54	91	1	0.0	59.2	66	59.2	2 12		55.0	4.2	:	5 -0.8
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		11	2.9	5.6	10.3	1						
		1	1		1	1						

10.3

10.3

8.3

7.0

All Impacted

All that meet NR Goal

3

7.1

5.0

LSA Associates, Inc.				16 Septen	nber 2010					
P. Ault				TNM 2.5						
RESULTS: BARRIER DESCRIPTIONS										
PROJECT/CONTRACT:	Kern	COG Retro	fit Noise Ba	arrier						
RUN:	Future	е								
BARRIER DESIGN:	SB4 -	16ft								
Barriers										
Name	Туре	Heights al	ong Barrie	r	Length	If Wall	If Berm			Cost
		Min	Avg	Max		Area	Volume	Тор	Run:Rise	
								Width		
		ft	ft	ft	ft	sq ft	cu yd	ft	ft:ft	\$
SB4	W	16.00	16.00	16.00	1150	18401				
									Total Cost:	

APPENDIX F

WORKSHEETS FOR FEASIBILITY AND REASONABLENESS ALLOWANCE CALCULATION

Worksheet A

Reasonable Allowance Calculation for Noise Abatement based on Critical Design Receiver

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	Х	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0		
3 - 7 dBA	Add \$2,000	Х	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	Х	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonable Allowance for	Benefited Residence		\$37,000
Unmodif	ied Barrier Allowance		\$555,000
Adjusted Reasonable Allowance for	Benefited Residence		
	ied Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0		
3 - 7 dBA	Add \$2,000	Х	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	X	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	X	\$0
Reasonable Allowa	nce for Benefited Residence		\$37,000
U	nmodified Barrier Allowance		\$555,000
Adjusted Reasonable Allowa	ance for Benefited Residence		
Adjusted U	Inmodified Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	Х	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0		
3 - 7 dBA	Add \$2,000	Х	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000		
9 - 11 dBA	Add \$4,000	Х	\$4,000
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonable Allowa	nce for Benefited Residence		\$39,000
U	nmodified Barrier Allowance		\$975,000
Adjusted Reasonable Allowa	nce for Benefited Residence		
Adjusted U	nmodified Barrier Allowance		
Adjusted reasonable allowance for Pacidones and Parrier must be rounded up to page	04 000		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

County: Kern County Route: SR 14

Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB1
Barrier Height (feet)	6
Critical Design Receiver	R4
Number of benefited Residences	15
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	65
Barrier Insertion Loss	6

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)
Project Exp Auth:
Program Code:

Barrier Name or ID	SB1
Barrier Height (feet)	8
Critical Design Receiver	R4
Number of benefited Residences	15
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	63
Barrier Insertion Loss	8

County: Kern County Route: SR 14

Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Barrier Name or ID	SB1
Barrier Height (feet)	10
Critical Design Receiver	R4
Number of benefited Residences	25
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	62
Barrier Insertion Loss	q

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0		
3 - 7 dBA	Add \$2,000	X	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000		
9 - 11 dBA	Add \$4,000	X	\$4,000
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	X	\$0
Reasonable Allowance	e for Benefited Residence		\$39,000
Unn	nodified Barrier Allowance		\$1,443,000
Adjusted Reasonable Allowand	e for Benefited Residence		
Adjusted Unn	nodified Barrier Allowance		

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	•
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0		
3 - 7 dBA	Add \$2,000	X	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000		
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000	X	\$6,000
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonable A	llowance for Benefited Residence		\$41,000
	Unmodified Barrier Allowance		\$1,517,000
Adjusted Reasonable A	llowance for Benefited Residence		
Adjus	ted Unmodified Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	Χ	\$0
3 - 7 dBA	Add \$2,000		
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0	Х	\$0
6 - 8 dBA	Add \$2,000		
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonable Allowance for	Benefited Residence		\$33,000
Unmodified Barrier Allowance			\$33,000
Adjusted Reasonable Allowance for	Benefited Residence		
Adjusted Unmodific	ed Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

County: Kern County

Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB1
Barrier Height (feet)	12
Critical Design Receiver	R4
Number of benefited Residences	37
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	60
Barrier Insertion Loss	11

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB1
Barrier Height (feet)	14
Critical Design Receiver	R4
Number of benefited Residences	37
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	58
Barrier Insertion Loss	13

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Barrier Name or ID	SB2
Barrier Height (feet)	6
Critical Design Receiver	R28
Number of benefited Residences	1
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	69
Future Noise Level	71
Change in Noise Level	2
Noise Level with Abatement	66
Barrier Insertion Loss	5

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000		
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	X	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	X	\$0
Reasonable Allowance for Benefit	ed Residence		\$35,000
Unmodified Barr	ier Allowance		\$70,000
Adjusted Reasonable Allowance for Benefit	ted Residence		
Adjusted Unmodified Barr	rier Allowance		

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise	Levels	check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000		
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	X	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 res	sidences?	check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	X	\$0
Rea	sonable Allowance for Benefited Residence		\$35,000
	Unmodified Barrier Allowance		\$70,000
Adjusted Rea	sonable Allowance for Benefited Residence		
-	Adjusted Unmodified Barrier Allowance		

Adjusted Unmodifie
Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	φ31,000
69 dBA or less	Add \$2,000	Х	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000		
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	X	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residence	es?	check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	X	\$0
Reasonabl	e Allowance for Benefited Residence		\$35,000
Unmodified Barrier Allowance			\$210,000
Adjusted Reasonabl	e Allowance for Benefited Residence		
Ad	justed Unmodified Barrier Allowance		
Adjusted reasonable allowance for Residence and Barrier must be round	ed up to nearest \$1,000.		

County: Kern County

Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB2
Barrier Height (feet)	8
Critical Design Receiver	R28
Number of benefited Residences	2
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	69
Future Noise Level	71
Change in Noise Level	2
Noise Level with Abatement	65
Barrier Insertion Loss	6

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue) Project Exp Auth: Program Code:

Barrier Name or ID	SB2
Barrier Height (feet)	10
Critical Design Receiver	R28
Number of benefited Residences	2
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	69
Future Noise Level	71
Change in Noise Level	2
Noise Level with Abatement	65
Barrier Insertion Loss	6

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Barrier Name or ID	SB2
Barrier Height (feet)	12
Critical Design Receiver	R28
Number of benefited Residences	6
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	69
Future Noise Level	71
Change in Noise Level	2
Noise Level with Abatement	63
Barrier Insertion Loss	8

Base Year 2009	
1. Absolute Noise Levels check one	
69 dBA or less Add \$2,000 X	\$2,000
70 - 74 dBA Add \$4,000	
75 - 78 dBA Add \$6,000	
More than 78 dBA Add \$8,000	
2. Design Year Increase over Existing Noise Levels check one	
Less than 3 dBA Add \$0 X	\$0
3 - 7 dBA Add \$2,000	
8 - 11 BA Add \$4,000	
12 dBA or more Add \$6,000	
3. Achievable Noise Reduction check one	
5 dBA Add \$0	
6 - 8 dBA Add \$2,000 X	\$2,000
9 - 11 dBA Add \$4,000	
12 dBA or more Add \$6,000	
4. New Highway Construction of Pre 1978 residences? check one	
YES on either one Add \$10,000	
NO on both Add \$0 X	\$0
Reasonable Allowance for Benefited Residence	\$35,000
Unmodified Barrier Allowance	\$490,000
Adjusted Reasonable Allowance for Benefited Residence	
Adjusted Unmodified Barrier Allowance	

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	401,000
69 dBA or less	Add \$2,000	Х	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Level	s	check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000		
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	X	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residen	ces?	check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasona	ble Allowance for Benefited Residence		\$35,000
	Unmodified Barrier Allowance		\$595,000
Adjusted Reasona	ble Allowance for Benefited Residence		
Α	djusted Unmodified Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

David Alliania			
Base Allowance			001.000
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	Х	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	Χ	\$0
3 - 7 dBA	Add \$2,000	Х	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0	Χ	\$0
6 - 8 dBA	Add \$2,000		
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?	•	check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonable Allowance for Be	enefited Residence		\$35,000
Unmodified Barrier Allowance			\$140,000
Adjusted Reasonable Allowance for Be	enefited Residence		•
Adjusted Unmodified	Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

County: Kern County

Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB2
Barrier Height (feet)	14
Critical Design Receiver	R28
Number of benefited Residences	14
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	69
Future Noise Level	71
Change in Noise Level	2
Noise Level with Abatement	63
Barrier Insertion Loss	8

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB2
Barrier Height (feet)	16
Critical Design Receiver	R28
Number of benefited Residences	17
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	69
Future Noise Level	71
Change in Noise Level	2
Noise Level with Abatement	63
Barrier Insertion Loss	8

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Barrier Name or ID	SB3
Barrier Height (feet)	6
Critical Design Receiver	R42
Number of benefited Residences	4
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	66
Future Noise Level	68
Change in Noise Level	2
Noise Level with Abatement	63
Barrier Insertion Loss	5

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000	X	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	X	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	X	\$0
Reasonable Allowance for Benefit	ted Residence		\$37,000
Unmodified Barr	rier Allowance		\$148,000
Adjusted Reasonable Allowance for Benefit	ted Residence		
Adjusted Unmodified Barr	rier Allowance		

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise	Levels	check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000	X	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction	<u> </u>	check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	X	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 re	sidences?	check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	X	\$0
Rea	sonable Allowance for Benefited Residence		\$37,000
	Unmodified Barrier Allowance		\$148,000
Adjusted Rea	sonable Allowance for Benefited Residence		
	Adjusted Unmodified Barrier Allowance		

Adjusted Unmodifie
Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

1			
Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000	X	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	Х	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonable Allowance for	r Benefited Residence		\$37,000
Unmodif	fied Barrier Allowance		\$296,000
Adjusted Reasonable Allowance for	r Benefited Residence		
Adjusted Unmodit	fied Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

County: Kern County

Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB3
Barrier Height (feet)	8
Critical Design Receiver	R42
Number of benefited Residences	4
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	66
Future Noise Level	68
Change in Noise Level	2
Noise Level with Abatement	62
Barrier Insertion Loss	6

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB3
Barrier Height (feet)	10
Critical Design Receiver	R42
Number of benefited Residences	4
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	66
Future Noise Level	68
Change in Noise Level	2
Noise Level with Abatement	62
Barrier Insertion Loss	6

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Barrier Name or ID	SB3
Barrier Height (feet)	12
Critical Design Receiver	R42
Number of benefited Residences	8
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	66
Future Noise Level	68
Change in Noise Level	2
Noise Level with Abatement	61
Barrier Insertion Loss	7

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000	Х	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	Х	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonable Allowance for Bene	efited Residence		\$37,000
Unmodified B	arrier Allowance		\$296,000
Adjusted Reasonable Allowance for Benderal	efited Residence		
Adjusted Unmodified B	arrier Allowance		

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	Х	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels	s	check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000	Х	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	Х	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residence	ces?	check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	X	\$0
Reasonab	le Allowance for Benefited Residence		\$37,000
	Unmodified Barrier Allowance		\$296,000
Adjusted Reasonah	ole Allowance for Benefited Residence		
A	djusted Unmodified Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

Base Allowance			i e
Base Year 2009			£24.000
			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000	X	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	X	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonable Allowance	for Benefited Residence		\$37,000
Unmo	dified Barrier Allowance		\$296,000
Adjusted Reasonable Allowance	for Benefited Residence		
Adjusted Unmo	dified Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

County: Kern County

Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB3
Barrier Height (feet)	14
Critical Design Receiver	R42
Number of benefited Residences	8
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	66
Future Noise Level	68
Change in Noise Level	2
Noise Level with Abatement	60
Barrier Insertion Loss	8

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB3
Barrier Height (feet)	16
Critical Design Receiver	R42
Number of benefited Residences	8
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	66
Future Noise Level	68
Change in Noise Level	2
Noise Level with Abatement	60
Barrier Insertion Loss	8

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Barrier Name or ID	SB4
Barrier Height (feet)	6
Critical Design Receiver	R44
Number of benefited Residences	8
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	65
Barrier Insertion Loss	6

Base Year 2009 1. Absolute Noise Levels check one	\$31,000
1. Absolute Noise Levels check one	
69 dBA or less Add \$2,000 X	\$2,000
70 - 74 dBA Add \$4,000	
75 - 78 dBA Add \$6,000	
More than 78 dBA Add \$8,000	
2. Design Year Increase over Existing Noise Levels check one	
Less than 3 dBA Add \$0 X	\$0
3 - 7 dBA Add \$2,000 X	\$2,000
8 - 11 BA Add \$4,000	
12 dBA or more Add \$6,000	
3. Achievable Noise Reduction check one	
5 dBA Add \$0	
6 - 8 dBA Add \$2,000 X	\$2,000
9 - 11 dBA Add \$4,000	
12 dBA or more Add \$6,000	
4. New Highway Construction of Pre 1978 residences? check one	
YES on either one Add \$10,000	
NO on both Add \$0 X	\$0
Reasonable Allowance for Benefited Residence	\$37,000
Unmodified Barrier Allowance	\$296,000
Adjusted Reasonable Allowance for Benefited Residence	
Adjusted Unmodified Barrier Allowance	

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	•
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Level	s	check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000	Х	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	X	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residen	ces?	check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonal	ole Allowance for Benefited Residence		\$37,000
	Unmodified Barrier Allowance		\$296,000
Adjusted Reasona	ble Allowance for Benefited Residence		
	djusted Unmodified Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	ψο.,σσσ
69 dBA or less	Add \$2,000	Х	\$2,000
70 - 74 dBA	Add \$4,000		* /
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	Х	\$0
3 - 7 dBA	Add \$2,000	Х	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	Х	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Х	\$0
Reasonable Al	lowance for Benefited Residence		\$37,000
	Unmodified Barrier Allowance		\$703,000
Adjusted Reasonable Al	lowance for Benefited Residence		
Adjust	ed Unmodified Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

County: Kern County

Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB4
Barrier Height (feet)	8
Critical Design Receiver	R44
Number of benefited Residences	8
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	65
Barrier Insertion Loss	6

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB4
Barrier Height (feet)	10
Critical Design Receiver	R44
Number of benefited Residences	8
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	64
Barrier Insertion Loss	7

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Barrier Name or ID	SB4
Barrier Height (feet)	12
Critical Design Receiver	R44
Number of benefited Residences	19
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	63
Barrier Insertion Loss	8

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	Χ	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise Levels		check one	
Less than 3 dBA	Add \$0	Х	\$0
3 - 7 dBA	Add \$2,000	Х	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	Х	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 residences?		check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	Χ	\$0
Reasonable Allowance for	or Benefited Residence	-	\$37,000
Unmod	ified Barrier Allowance		\$703,000
Adjusted Reasonable Allowance for	or Benefited Residence		
Adjusted Unmod	ified Barrier Allowance		

Base Allowance			
Base Year 2009			\$31,000
1. Absolute Noise Levels		check one	
69 dBA or less	Add \$2,000	X	\$2,000
70 - 74 dBA	Add \$4,000		
75 - 78 dBA	Add \$6,000		
More than 78 dBA	Add \$8,000		
2. Design Year Increase over Existing Noise I	evels	check one	
Less than 3 dBA	Add \$0	X	\$0
3 - 7 dBA	Add \$2,000	X	\$2,000
8 - 11 BA	Add \$4,000		
12 dBA or more	Add \$6,000		
3. Achievable Noise Reduction		check one	
5 dBA	Add \$0		
6 - 8 dBA	Add \$2,000	Х	\$2,000
9 - 11 dBA	Add \$4,000		
12 dBA or more	Add \$6,000		
4. New Highway Construction of Pre 1978 res	idences?	check one	
YES on either one	Add \$10,000		
NO on both	Add \$0	X	\$0
Reas	onable Allowance for Benefited Residence)	\$37,000
	Unmodified Barrier Allowance	•	\$703,000
Adjusted Reas	onable Allowance for Benefited Residence		
	Adjusted Unmodified Barrier Allowance		

Adjusted reasonable allowance for Residence and Barrier must be rounded up to nearest \$1,000.

County: Kern County

Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue)

Project Exp Auth: Program Code:

Barrier Name or ID	SB4
Barrier Height (feet)	14
Critical Design Receiver	R44
Number of benefited Residences	19
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	63
Barrier Insertion Loss	8

County: Kern County
Route: SR 14
Post Mile: (from adjacent Hillcrest Avenue to Matthew Avenue) Project Exp Auth: Program Code:

Barrier Name or ID	SB4
Barrier Height (feet)	16
Critical Design Receiver	R44
Number of benefited Residences	19
New Hightway Construction	No
Pre 1978 residences	No
ExistingNoise Level	68
Future Noise Level	71
Change in Noise Level	3
Noise Level with Abatement	63
Barrier Insertion Loss	8