Travel Demand Modeling 101 Overview For Kern COG Regional Transportation Modeling Committee (TMC) Adapted from Iowa State University presentation ## Why Are We Here Today? ### What is the Goal for Today? - Introduction/Overview: Travel Demand Modeling - Why do we model travel demand? - How do we model travel demand? - Who uses model output? - Get the "Big Picture"! - Don't worry about remembering everything today. - Presentation designed to: - Educate MPO Policy and Technical Committee Members on the modeling process. #### Presentation Overview - Introduction to Travel Modeling - How to Build a Model - The "Four" Steps - Model Output - Performance Measures - Model Application - How Do We Use It? - Who Uses It? - Etc. #### What Is a Traffic Model? - Typical Definition: - A computer program that runs mathematical equations using input data to replicate travel choices that individuals make. - The output is a measure of future travel demand that is expressed in terms of future traffic volumes. - Simply: A forecast of future travel. - Where are people traveling to and from. - What routes are they choosing to get there. #### Why Are Models Important? - Models are the heart of Transportation Planning. - They help to guide the development of Long-Range Transportation Plans. - They help us determine how much traffic will be on our roadways in the future. - They help us to understand the impact that development has on our transportation system. - They guide future investment strategies. - Models allow us to make informed decisions. #### What Are Travel Models Used For? - Provide Decision Makers the best possible information about future needs. - Determining where congestion may be in the future. - Determining what projects will alleviate or minimize that congestion. - Scenario analyses. (What ifs). - How many lanes are we going to need? - Determine traffic impact due to land use changes. - Important to most all transportation projects. - On-Road Mobile Source Air Emissions Analysis #### Building a Travel Demand Model - What do we need to start? - DATA! - Population (how many people do we have?) - Households (where do they live) - Employment (jobs, shopping, restaurants, recreation, etc.) - Schools (K-12, College locations) - Roadway Network (existing and future) - Traffic Counts - Household Travel Characteristics - What causes us to travel each day and how do we get there. #### How is our data organized? It is subdivided into special zones commonly referred to as: - Traffic or Transportation Analysis Zones - Zones (for short) - TAZS (for shorter) #### Traffic Analysis Zones (TAZ) What is a TAZ? - Geographic Area where Data is Stored - Population, Employment, School Enrollment - Similar to Census Geography (Aggregated) - In Kern, Subdivisions of Census Tracts ## Traffic Analysis Zones #### Kern's 2,000 Traffic Analysis Zones http://www.kerncog.org/category/data-center/data/ #### Traffic Analysis Zones (TAZ) TAZ Characteristics - Approximately equal in size (smaller in downtown but larger on the periphery) - Subdivisions of census tracts #### Traffic Analysis Zones (TAZ) - TAZ Characteristics - TAZ boundaries are major roadways or physical barriers such as railroads, rivers, etc. - Typically follow Census geography such as block or block group boundaries. - Goal: replicate areas of Origin and Destination for trips being made. - Home to Work; Home to Shopping; Work to Shopping, etc. #### Model Input Data - Socio-Economic Data - Population - Households/Dwelling Units - Employment - School Enrollment - Vehicle Ownership - Income Levels - Land Use Characteristics / Zoning # SE Data Table | | Α | В | С | D | Е | F | G | Н | |----|-------|---------|-----------|--------|-------|---------|---|-------| | 1 | Socio | есоноті | Year 2000 | | | | | | | 2 | | | | | | | | | | | TAZ | TOTAL | OCUPPIED | RETAIL | TOTAL | SERVICE | | OTHER | | | | | DWELLING | | | | | | | 3 | 2000 | POP | UNITS | EMPL | EMPL | EMPL | | EMPL | | 4 | | | | | | | | | | 5 | 1 | . 0 | 0 | 1 | 526 | 525 | | 0 | | 6 | 2 | 2881 | 960 | 345 | 5552 | 5207 | | 0 | | 7 | 3 | 3032 | 1010 | 0 | 1447 | 1306 | | 141 | | 8 | | 0 | 0 | 0 | 100 | 100 | | 0 | | 9 | 3 | 0 | 0 | 0 | 60 | 60 | | 0 | | 10 |) 6 | 949 | 343 | 316 | 434 | 52 | | 66 | | 1 | 7 | 2667 | 422 | 189 | 362 | 93 | | 80 | | 12 | 2 8 | 822 | 251 | 0 | 27 | 26 | | 1 | | 13 | 3 9 | 2203 | 25 | 0 | 80 | 80 | | 0 | | 14 | 1 10 | 373 | 137 | 28 | 54 | 26 | | 0 | | 15 | 11 | 259 | 134 | 0 | 10 | 10 | | 0 | | 18 | 6 12 | 632 | 277 | 1 | 59 | 35 | | 23 | | 17 | 13 | 0 | 0 | 0 | 118 | 118 | | 0 | | 18 | 3 14 | 0 | 0 | 0 | 286 | 286 | | 0 | | 19 | 3 15 | 500 | 249 | 0 | 5 | 5 | | 0 | | 20 | 16 | 212 | 92 | 0 | 2 | 2 | | 0 | | 2 | 17 | 208 | 87 | 8 | 375 | 80 | | 287 | | 22 | 2 18 | 0 | 0 | 0 | 1114 | 30 | | 1084 | | 23 | 3 19 | 0 | 0 | 411 | 531 | 85 | | 35 | | 24 | 1 20 | 265 | 111 | 0 | 45 | 0 | | 45 | | 25 | 5 21 | 1408 | 768 | 269 | 433 | 45 | | 119 | # Kern Integrated Modeling Flowchart #### Regional Transportation Plan Modeling - 1. Inputs from Planners, Stakeholders, Public Outreach, Environmental Datasets, and current General Plans. - 1a. Planners, Stakeholders, and the Public develop Alternative, or Transit based strategies. - The Land Use Model **UPlan** allocates growth based on parameters, attractions like freeways, discouragements like public lands, and resources. It creates a GIS based conceptual growth map. - 3. Uplan also outputs socioeconomic data by TAZ used as the input data for the Travel Model **Cube**. - 4. Cube generates LOS maps, VMT, and other Transportation measures. - 5. Cube output data is also used in **EMFAC** to generate Emission measures. - 6. The measures generated are reviewed, and relative comparisons between scenarios can be made. #### Modified 4-Step Model Process Figure 2 - San Joaquin Valley Model Improvement Program: Model Components #### The Four Steps Trip Generation - How many trips? Trip Distribution - Where are they going? Mode Choices - By what mode? Trip Assignment - What path are they taking? #### Trip Generation (1st Step) Determines how many trips are being Produced from and Attracted to each TAZ? **Productions and Attractions** Buzz phrase: \mathbf{P} s and \mathbf{A} s #### Trip Generation Methods - Cross Classification - Used to determine trip productions by TAZ - Persons per Household and Auto's Available - Trip Rates Based on Activity Units - ITE Trip Generation Manual - Hospitals, Fast Food Restaurants, etc. - Regression Equations - Used to determine TAZ attractions - Based on previously observed data. #### Special Generators - Used for zones that have trip rates significantly different from standard trip rates. - Military Bases - Prisons #### Trip Purposes - Trips are stratified into purposes: - Home-Based Work Trips between home and work. - Home-Based Other Trips between home and other places such as shopping and recreation. - **Non-home Based** Trips that do not involve the home. - External Trips Trips that enter/leave or travel through the study area. # What Do We Get Out of Trip Generation? - Trip Productions and Trip Attractions - By Traffic Analysis Zone - By Trip Purpose #### The Four Steps Trip Generation - How many trips? Mode Choices - By what mode? Trip Assignment - What path are they taking? ## Trip Distribution (2nd Step) Now we know how many trips are being produced from and attracted to each TAZ. But we don't yet know where the trips are going to or coming from. #### Roadway Network Before we can figure out how the trips are distributed between TAZs, we need to know how the zones are connected. Zones are connected by a network or roads. ### Roadway Network #### Roadway Network A system of nodes, links, and centroids that describe a transportation system. - 1. Node: intersections of roadway links. - 2. Links: Used to represent the street network (local collector roads are not included). - 3. Centroids: special node representing origin and destination of all trips for TAZ. - 4. Centroid connectors: special links that represent local roads and provide access between centroids and the network. #### Network Attributes - Transportation System - Speed - Capacity - Direction - Travel Time - Functional Classification - Traffic Counts # Network Building Actual Street System and River #### Network Building Computer Street System #### Centroids # Trip Distribution (2nd Step) # Trip Distribution Determines where trips are going to and coming from. #### The Gravity Model $$T_{ij} = P_i \times \left(\frac{A_j \times F_{ij} \times K_{ij}}{\sum_{j=1}^{n} A_j \times F_{ij} \times K_{ij}}\right)$$ Source: NTI #### The Gravity Model - Analogous to Newton's Law of Gravitation! - The number of trips between zones are directly proportional to the number of productions at the origin zone and attractions at the destination zone and; - Trips are inversely proportional to a function of the "friction" between zones measured in distance. ## Friction or Impedance Factors FF Inversely Proportional Time | FRIC | FAC.D | AT - | WordPad | | | | | |--------|---------|------|-------------|---------|------|-------|-------| | ile Ed | lit Vie | w I | nsert Forma | it Help | | | | | | | 4 | A 14 | X 🛍 | | ь | | | | Min | n n | HBW | нво | NHB | Truck | E-I | | GF | 1 | 1 | 2300 | 5325 | 9000 | 7500 | 10000 | | GF | 2 | 1 | 1850 | 4850 | 7500 | 7000 | 8900 | | GF | 3 | 1 | 1500 | 4388 | 6000 | 6300 | 7800 | | GF | 4 | 1 | 1200 | 3850 | 4000 | 5600 | 6400 | | GF | 5 | 1 | 1000 | 3400 | 2800 | 5000 | 5000 | | GF | 6 | 1 | 870 | 2725 | 1800 | 3000 | 3300 | | GF | 7 | 1 | 730 | 1650 | 1100 | 1100 | 1900 | | GF | 8 | 1 | 620 | 1000 | 700 | 760 | 1250 | | GF | 9 | 1 | 530 | 653 | 450 | 500 | 870 | | GF | 10 | 1 | 450 | 420 | 330 | 380 | 670 | | GF | 11 | 1 | 370 | 320 | 240 | 270 | 530 | | GF | 12 | 1 | 315 | 254 | 185 | 230 | 420 | | GF | 13 | 1 | 275 | 196 | 140 | 195 | 345 | | GF | 14 | 1 | 240 | 163 | 110 | 170 | 290 | | GF | 15 | 1 | 215 | 140 | 85 | 150 | 240 | | GF | 16 | 1 | 195 | 120 | 65 | 135 | 205 | | GF | 17 | 1 | 175 | 101 | 50 | 120 | 170 | | GF | 18 | 1 | 160 | 89 | 38 | 106 | 145 | # Trip Distribution (Shortest Paths or Skim Trees) #### Trip Distribution Example that plugs in the numbers to the Gravity Model # Trip Distribution Example Trip Table | Trip Matrix | Zone 1 | Zone 2 | Zone 3 | Total Productions | |-------------|--------|--------|--------|--------------------------| | Zone 1 | 13 | 2 | 5 | 20 | | Zone 2 | 143 | 51 | 106 | 300 | | Zone 3 | 20 | 8 | 22 | 50 | # Trip Distribution: Trip Matrix | | AD (Licensed to | | - | | | 7.3 | | | | | | | | |------------------|----------------------|-------------|---------------|-----------------|--------------|-----------------|---------------|--------------|---------------|---------------|------------------|-------|----------| | File Ed | lit Map Dataview | Selection M | latrix Layout | Tools Proced | ures Network | s/Paths Planni | ng Statistics | Window He | elp | | | | _ = | | | 📙 📤 QuickSu | ım | - A | | ﷺ∑ ∑ | | F | | | | | | | | | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 15 | | | | 4.37 | 5.86 | 2.62 | 6.92 | 1.84 | 1.50 | 0.64 | 2.98 | 6.76 | 0.89 | 6.16 | 4.12 | 4 | | | 26.23 | 63.09 | 8.81 | 26.12 | 14.51 | 4.52 | 1.88 | 26.11 | 75.00 | 6.88 | 43.80 | 41.04 | 43. | | | 16.74 | 34.52 | 4.66 | 12.13 | 12.54 | 2.32 | 0.95 | 18.44 | 55.65 | 5.01 | 31.17 | 29.49 | 31 | | | 8.34 | 25.24 | 9.57 | 29.88 | 5.20 | 5.37 | 2.10 | 8.35 | 19.62 | 3.20 | 24.05 | 12.32 | 11 | | | 1.84 | 3.19 | 1.93 | 4.30 | 1.34 | 0.98 | 0.40 | 1.78 | 4.31 | 0.59 | 4.05 | 2.37 | 2 | | | 11.60 | 19.98 | 2.76 | 6.92 | 7.74 | 2.23 | 0.91 | 15.90 | 52.40 | 4.32 | 26.40 | 23.71 | 26 | | | 4.24 | 7.44 | 1.07 | 2.63 | 2.68 | 0.87 | 0.35 | 6.76 | 17.54 | 1.45 | 8.74 | 8.66 | 9 | | | 7.52 | 12.57 | 3.04 | 7.54 | 4.54 | 2.23 | 1.09 | 11.38 | 32.52 | 2.80 | 17.06 | 15.06 | 17 | | | 6.75 | 11.72 | 5.94 | 14.83 | 4.30 | 4.77 | 1.84 | 9.45 | 21.76 | 2.82 | 19.25 | 11.13 | 12 | | | 5.07 | 8.64 | 1.37 | 3.50 | 3.40 | 1.02 | 0.38 | 7.45 | 23.28 | 2.68 | 15.25 | 14.13 | 14 | | | 27.87 | 50.13 | 9.90 | 25.40 | 18.62 | 7.71 | 2.81 | 38.98 | 122.14 | 14.18 | 92.91 | 69.62 | 72 | | | 4.88 | 8.84 | 3.84 | 9.90 | 2.82 | 2.80 | 1.16 | 5.86 | 14.51 | 2.38 | 15.17 | 12.81 | 10 | | | 5.09 | 8.76 | 3.73 | 9.45 | 2.85 | 2.81 | 1.19 | 6.39 | 16.35 | 2.22 | 14.52 | 10.49 | 1 | | | 3.96 | 6.56 | 2.00 | 5.01 | 2.20 | 1.49 | 0.69 | 5.11 | 13.18 | 1.44 | 9.28 | 7.77 | | | | 4.43 | 7.30 | 1.12 | 2.85 | 2.47 | 0.83 | 0.36 | 5.97 | 18.49 | 1.66 | 10.01 | 10.79 | 13 | | | 12.94 | 19.96 | 2.55 | 6.65 | 7.11 | 1.76 | 0.76 | 16.33 | 50.52 | 4.39 | 26.44 | 29.59 | 34 | | | 9.60 | 14.33 | 1.79 | 4.69 | 5.07 | 1.22 | 0.52 | 11.45 | 35.30 | 3.09 | 18.72 | 20.76 | 23 | | | 7.31 | 10.07 | 1.27 | 3.34 | 3.73 | 0.74 | 0.33 | 7.84 | 23.84 | 2.04 | 12.30 | 13.98 | 15 | | | 13.76 | 21.86 | 2.78 | 7.26 | 7.64 | 1.95 | 0.84 | 17.65 | 54.54 | 4.78 | 28.94 | 34.56 | 30 | | | 15.16 | 23.17 | 9.42 | 24.62 | 8.46 | 6.05 | 2.64 | 16.07 | 41.47 | 5.46 | 35.87 | 32.35 | 28 | | | 6.60 | 10.63 | 1.87 | 4.91 | 3.75 | 1.29 | 0.55 | 8.25 | 24.79 | 2.63 | 15.76 | 22.17 | 17 | | | 11.29 | 18.27 | 2.92 | 7.63 | 6.38 | 2.16 | 0.92 | 14.66 | 44.67 | 4.49 | 26.96 | 30.32 | 33 | | | 20.46 | 32.78 | 5.15 | 13.64 | 11.78 | 3.50 | 1.46 | 25.20 | 76.05 | 7.75 | 47.44 | 57.81 | 5 | | | 11.21 | 17.69 | 2.39 | 6.39 | 6.23 | 1.63 | 0.69 | 13.38 | 40.61 | 3.96 | 24.41 | 28.85 | 26 | | | 13.36 | 20.72 | 2.62 | 6.92 | 7.29 | 1.79 | 0.76 | 16.26 | 49.86 | 4.47 | 26.86 | 32.25 | 32 | | | 3.60 | 5.65 | 0.84 | 2.12 | 2.02 | 0.61 | 0.28 | 4.88 | 13.18 | 1.17 | 7.10 | 7.74 | 9 | | | 7.95 | 11.97 | 1.38 | 3.60 | 4.32 | 0.92 | 0.41 | 9.74 | 28.38 | 2.45 | 14.77 | 16.66 | 18 | | | 0.50 | 0.62 | 0.30 | 0.75 | 0.22 | 0.18 | 0.08 | 0.35 | 0.80 | 0.11 | 0.73 | 0.49 | (| | | 0.82 | 1.04 | 0.49 | 1.25 | 0.35 | 0.28 | 0.12 | 0.56 | 1.27 | 0.17 | 1.17 | 0.78 | (| | | 21.08 | 31.31 | 4.09 | 10.90 | 9.48 | 2.54 | 1.05 | 18.97 | 54.97 | 4.93 | 31.12 | 31.94 | 34 | | | 16.38 | 24.17 | 2.83 | 7.60 | 7.50 | 1.69 | 0.70 | 14.93 | 43.73 | 3.83 | 23.91 | 25.33 | 27 | | | 35.40 | 51.18 | 5.56 | 15.25 | 17.09 | 3.24 | 1.39 | 34.80 | 106.07 | 9.26 | 57.15 | 62.92 | 66 | | | 7.49 | 11.45 | 1.50 | 4.07 | 3.75 | 1.03 | 0.43 | 8.10 | 24.45 | 2.23 | 14.02 | 14.59 | 15 | |) | 23 76 | 36 04 | 4 27 | 11 48 | 12 26 | 2 85 | 1 20 | 26 33 | 8N N7 | 7 15 | 44 56 | 47 83 | 51 | | to difference of | 40 | | | 1 | | | | | l | | | | > | | | .43 rows by 143 colu | | <u> ~</u> × | -, | | | _ | work: d:\ear | \ames2000bina | rynetwork.net | | | | | 🗸 etar | T Oame | e e | Z≡ Mi∉ | crosoft DowerPo | int de | TransCAD (Lices | send t | | | | <i>j</i> 0 ∃2 12 | | 10:11.00 | #### The Four Steps Trip Generation - How many trips? Trip Distribution - Where are they going? Mode Choices - By what mode? Trip Assignment - What path are they taking? # Mode Split (3rd Step) #### Mode Choice Models • Mode Choice Models model the travelers choice of which mode to take, ie car, transit, walk, etc. #### Mode Choice Models - Kern's Mode share is approximately: - Transit: 0.5% - Non-motorized: 13% - Single Occupancy Vehicle (SOV): 38% - High Occupancy Vehicle (HOV) 2+ pers: 47% #### **External Trip Estimation** - Good idea of internal travel (planning area) - What about trips that leave the area? - External Station Description - Somewhat similar to TAZ - Origin and Destination of Trips - Two kinds of trips. - External to External - Internal to External or External to Internal #### **External Trip Estimation** - NCHRP 365 Process Travel Estimation Guide - Urban Areas approximately 50,000 in Pop. - 1st Step: Determine Through Trip Percentages - Larger Urban Areas have more EI/IE - Through trip % based on: - ADT (cordon volume) - Size of Area - Functional Class of Facility - Vehicle Makeup (% trucks) (propensity for through trip) #### **External Trip Estimation** - 2nd Step: Distribution of EE Trips - Modlin equations to accomplish this. - Discuss in detail later in the semester. - Result is EE matrix - 3rd Step: EI/IE Productions and Attractions - Involved process to be covered in detail later. - EI/IE trips get distributed with the Gravity Model. EE trip matrix already distributed. # **External Stations** #### The Four Steps Trip Generation - How many trips? Trip Distribution - Where are they going? Mode Choices - By what mode? Trip Assignment - What path are they taking? ## Traffic Assignment Now it is known how many trips are going between each zone pair. ■ What are we missing? ### Trip Assignment (4th Step) Determining the path a trip will take between the origin and destination TAZ. ### Traffic Assignment - Now we know how many trips there are, where they are going and the mode they are using, but not yet the path they will take. - Several assignment methods available - Uncongested Shortest Path - Human Behavior Stochastic - Congestion Capacity Restraint - Equilibrium No trip can decrease its travel time by taking an alternate route. # Trip Assignment – Path Selection Criteria The Path a Trip will most likely take between two zones is based on: - Travel Time or Friction - Congestion or V/C Ratio - Turn Penalties & Prohibitions - 15 second penalty for left turns, no right turns, etc. ### Traffic Assignment Outputs - Link volumes and speeds - Turning movements at intersections - Estimates of Regional VMT (vehicle miles traveled) and VHT (vehicle hours of travel) - Congestion measures (V/C Ratio) #### Loaded Network Volumes (ADT) #### Loaded Network Flows #### Validation and Model Errors - Steps to Obtain a Reliable Model - Model Estimation - Model Calibration - Model Validation (Traffic Counts) - Model Application - Reasonableness Checks - Sensitivity Checks ## Steps to Obtain a Reliable Model - Model Estimation - Statistical estimation of model parameters - Trip Generation Rates - Trip Length Frequency Distribution - Model Calibration - Adjustment of model parameters until predicted travel matches observed travel ## Steps to Obtain a Reliable Model #### Model Validation Checking the model results against observed data and adjusting the parameters until model results fall within an acceptable range of error. #### Model Application - Checking the reasonableness of future year traffic projections - Testing the sensitivity of the model to system or policy changes # Network Connectivity Check #### Screen Line ## Cordon Line ## Cut Line ## Acceptable Ranges of Error #### Acceptable Ranges of Error (% deviation) #### Two Models (Base and Future)? - Two Time Frames (Two Models) - Base Year - Forecast Year - Base Year Model - Calibrated to Match Traffic Counts - Replicates Existing Conditions - Gives Confidence for Future Projections #### Two Models? - Forecast or Planning Horizon Year - At least 20 Years into the Future - Forecast Population, Employment, etc. - Includes Planned Roadways and Development - Trend for Interim Year Scenarios - Base, 5, 10 and 20 Questions? Documentation: http://www.kerncog.org/category/data-center/transportation- modeling/