Travel Demand Modeling 101 Overview

For Kern COG

Regional Transportation Modeling Committee (TMC)

Adapted from Iowa State University presentation

Why Are We Here Today?

What is the Goal for Today?

- Introduction/Overview: Travel Demand Modeling
 - Why do we model travel demand?
 - How do we model travel demand?
 - Who uses model output?
 - Get the "Big Picture"!
 - Don't worry about remembering everything today.
- Presentation designed to:
 - Educate MPO Policy and Technical Committee Members on the modeling process.

Presentation Overview

- Introduction to Travel Modeling
- How to Build a Model
- The "Four" Steps
- Model Output
- Performance Measures
- Model Application
 - How Do We Use It?
 - Who Uses It?
 - Etc.

What Is a Traffic Model?

- Typical Definition:
 - A computer program that runs mathematical equations using input data to replicate travel choices that individuals make.
- The output is a measure of future travel demand that is expressed in terms of future traffic volumes.
- Simply: A forecast of future travel.
 - Where are people traveling to and from.
 - What routes are they choosing to get there.

Why Are Models Important?

- Models are the heart of Transportation Planning.
- They help to guide the development of Long-Range Transportation Plans.
- They help us determine how much traffic will be on our roadways in the future.
- They help us to understand the impact that development has on our transportation system.
- They guide future investment strategies.
- Models allow us to make informed decisions.

What Are Travel Models Used For?

- Provide Decision Makers the best possible information about future needs.
- Determining where congestion may be in the future.
- Determining what projects will alleviate or minimize that congestion.
- Scenario analyses. (What ifs).
- How many lanes are we going to need?
- Determine traffic impact due to land use changes.
- Important to most all transportation projects.
- On-Road Mobile Source Air Emissions Analysis

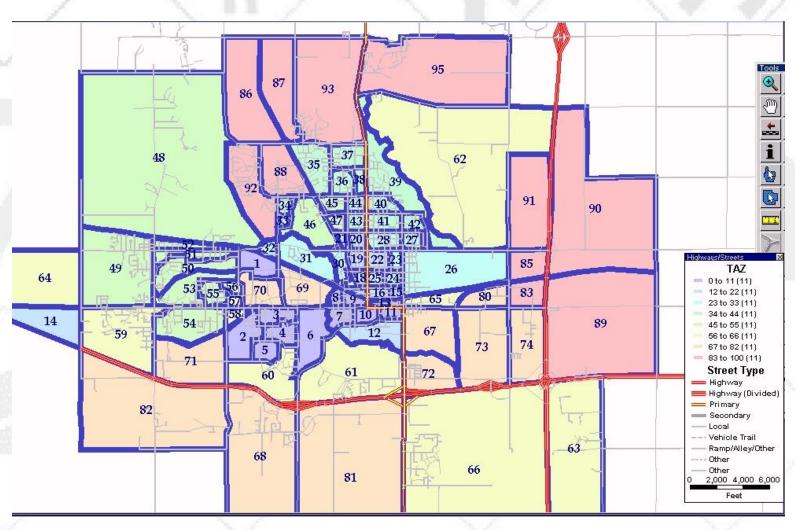
Building a Travel Demand Model

- What do we need to start?
- DATA!
 - Population (how many people do we have?)
 - Households (where do they live)
 - Employment (jobs, shopping, restaurants, recreation, etc.)
 - Schools (K-12, College locations)
 - Roadway Network (existing and future)
 - Traffic Counts
 - Household Travel Characteristics
- What causes us to travel each day and how do we get there.

How is our data organized?

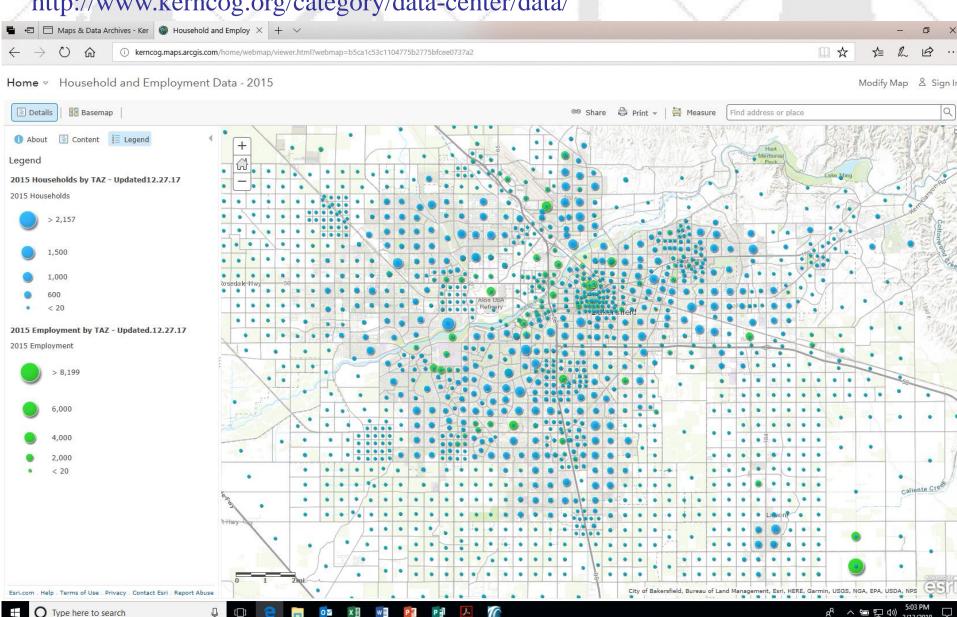
It is subdivided into special zones commonly referred to as:

- Traffic or Transportation Analysis Zones
- Zones (for short)
- TAZS (for shorter)


Traffic Analysis Zones (TAZ)

What is a TAZ?

- Geographic Area where Data is Stored
 - Population, Employment, School Enrollment


- Similar to Census Geography (Aggregated)
 - In Kern, Subdivisions of Census Tracts

Traffic Analysis Zones

Kern's 2,000 Traffic Analysis Zones

http://www.kerncog.org/category/data-center/data/

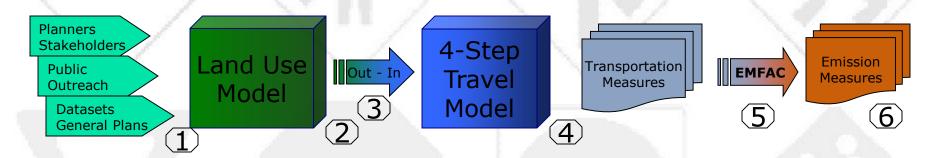
Traffic Analysis Zones (TAZ)

TAZ Characteristics

- Approximately equal in size (smaller in downtown but larger on the periphery)
- Subdivisions of census tracts

Traffic Analysis Zones (TAZ)

- TAZ Characteristics
 - TAZ boundaries are major roadways or physical barriers such as railroads, rivers, etc.
 - Typically follow Census geography such as block or block group boundaries.
 - Goal: replicate areas of Origin and Destination for trips being made.
 - Home to Work; Home to Shopping; Work to Shopping, etc.

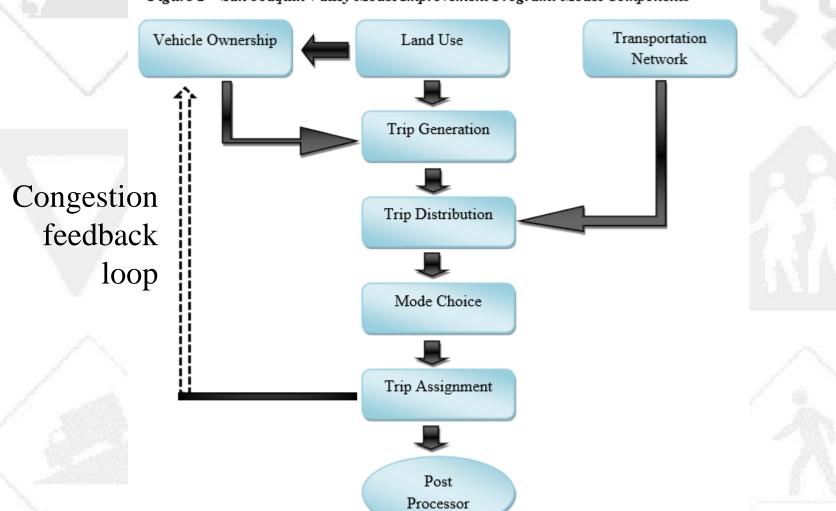

Model Input Data

- Socio-Economic Data
 - Population
 - Households/Dwelling Units
 - Employment
 - School Enrollment
 - Vehicle Ownership
 - Income Levels
 - Land Use Characteristics / Zoning

SE Data Table

	Α	В	С	D	Е	F	G	Н
1	Socio	есоноті	Year 2000					
2								
	TAZ	TOTAL	OCUPPIED	RETAIL	TOTAL	SERVICE		OTHER
			DWELLING					
3	2000	POP	UNITS	EMPL	EMPL	EMPL		EMPL
4								
5	1	. 0	0	1	526	525		0
6	2	2881	960	345	5552	5207		0
7	3	3032	1010	0	1447	1306		141
8		0	0	0	100	100		0
9	3	0	0	0	60	60		0
10) 6	949	343	316	434	52		66
1	7	2667	422	189	362	93		80
12	2 8	822	251	0	27	26		1
13	3 9	2203	25	0	80	80		0
14	1 10	373	137	28	54	26		0
15	11	259	134	0	10	10		0
18	6 12	632	277	1	59	35		23
17	13	0	0	0	118	118		0
18	3 14	0	0	0	286	286		0
19	3 15	500	249	0	5	5		0
20	16	212	92	0	2	2		0
2	17	208	87	8	375	80		287
22	2 18	0	0	0	1114	30		1084
23	3 19	0	0	411	531	85		35
24	1 20	265	111	0	45	0		45
25	5 21	1408	768	269	433	45		119

Kern Integrated Modeling Flowchart



Regional Transportation Plan Modeling

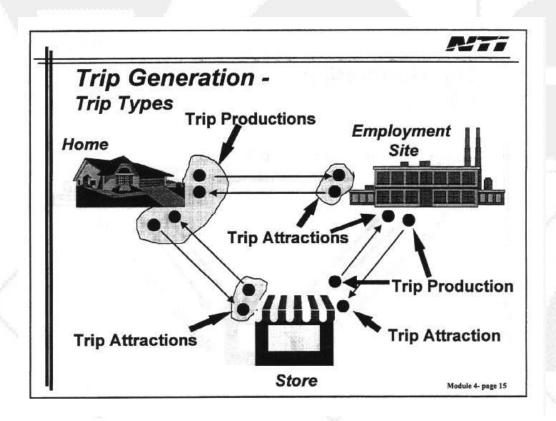
- 1. Inputs from Planners, Stakeholders, Public Outreach, Environmental Datasets, and current General Plans.
 - 1a. Planners, Stakeholders, and the Public develop Alternative, or Transit based strategies.
- The Land Use Model **UPlan** allocates growth based on parameters, attractions like freeways, discouragements like public lands, and resources. It creates a GIS based conceptual growth map.
- 3. Uplan also outputs socioeconomic data by TAZ used as the input data for the Travel Model **Cube**.
- 4. Cube generates LOS maps, VMT, and other Transportation measures.
- 5. Cube output data is also used in **EMFAC** to generate Emission measures.
- 6. The measures generated are reviewed, and relative comparisons between scenarios can be made.

Modified 4-Step Model Process

Figure 2 - San Joaquin Valley Model Improvement Program: Model Components

The Four Steps

Trip Generation - How many trips?


Trip Distribution - Where are they going?

Mode Choices - By what mode?

Trip Assignment - What path are they taking?

Trip Generation (1st Step)

Determines how many trips are being Produced from and Attracted to each TAZ?

Productions and Attractions

Buzz phrase: \mathbf{P} s and \mathbf{A} s

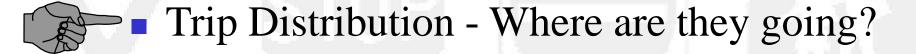
Trip Generation Methods

- Cross Classification
 - Used to determine trip productions by TAZ
 - Persons per Household and Auto's Available
- Trip Rates Based on Activity Units
 - ITE Trip Generation Manual
 - Hospitals, Fast Food Restaurants, etc.
- Regression Equations
 - Used to determine TAZ attractions
 - Based on previously observed data.

Special Generators

- Used for zones that have trip rates significantly different from standard trip rates.
 - Military Bases
 - Prisons

Trip Purposes


- Trips are stratified into purposes:
 - Home-Based Work Trips between home and work.
 - Home-Based Other Trips between home and other places such as shopping and recreation.
 - **Non-home Based** Trips that do not involve the home.
 - External Trips Trips that enter/leave or travel through the study area.

What Do We Get Out of Trip Generation?

- Trip Productions and Trip Attractions
 - By Traffic Analysis Zone
 - By Trip Purpose

The Four Steps

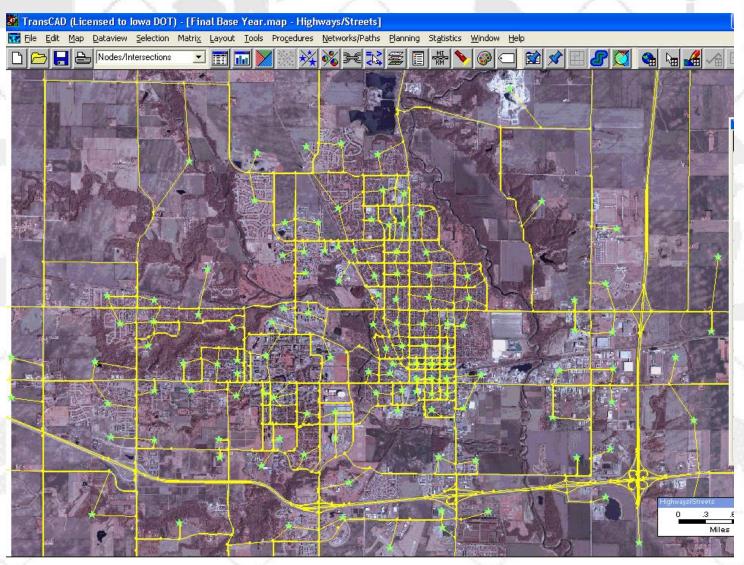
Trip Generation - How many trips?

Mode Choices - By what mode?

Trip Assignment - What path are they taking?

Trip Distribution (2nd Step)

 Now we know how many trips are being produced from and attracted to each TAZ.


But we don't yet know where the trips are going to or coming from.

Roadway Network

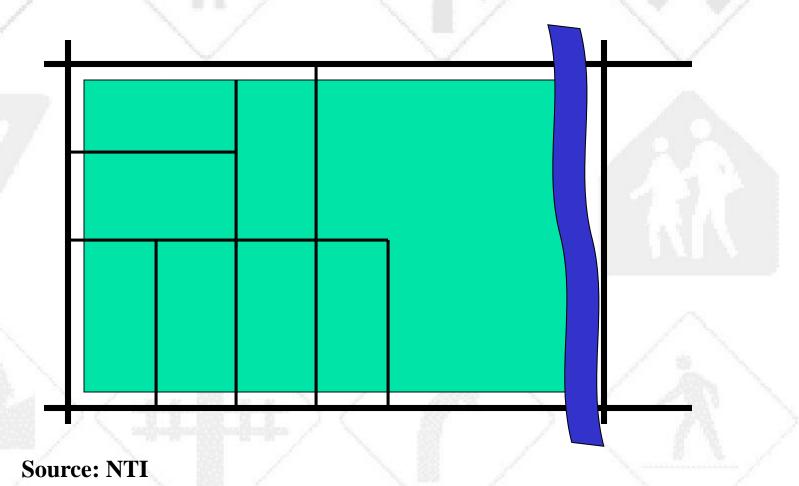
Before we can figure out how the trips are distributed between TAZs, we need to know how the zones are connected.

Zones are connected by a network or roads.

Roadway Network

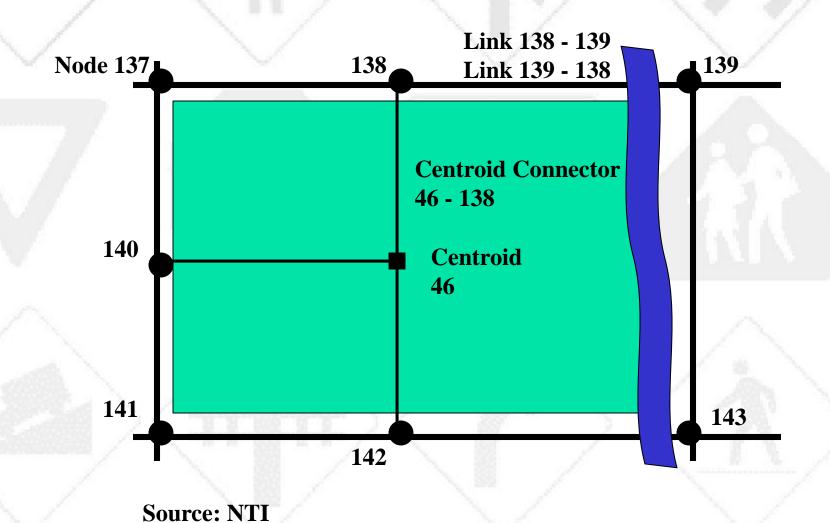
Roadway Network

A system of nodes, links, and centroids that describe a transportation system.

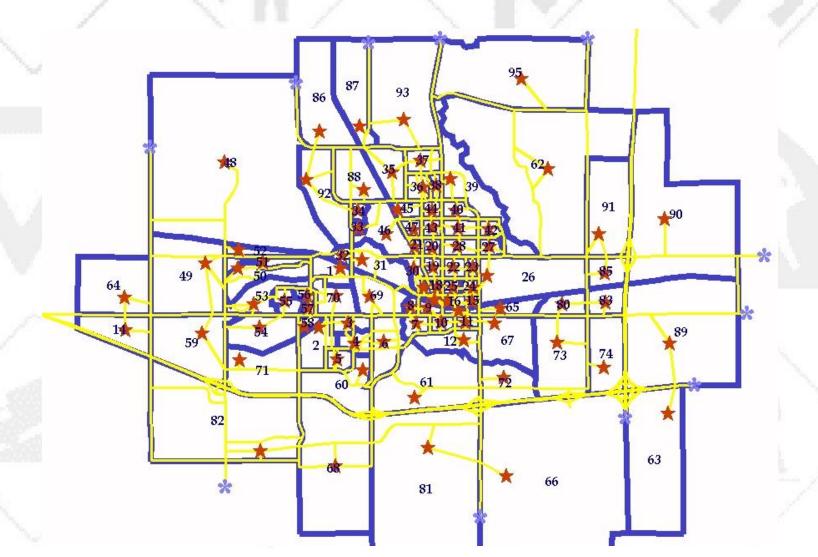

- 1. Node: intersections of roadway links.
- 2. Links: Used to represent the street network (local collector roads are not included).
- 3. Centroids: special node representing origin and destination of all trips for TAZ.
- 4. Centroid connectors: special links that represent local roads and provide access between centroids and the network.

Network Attributes

- Transportation System
 - Speed
 - Capacity
 - Direction
 - Travel Time
 - Functional Classification
 - Traffic Counts


Network Building

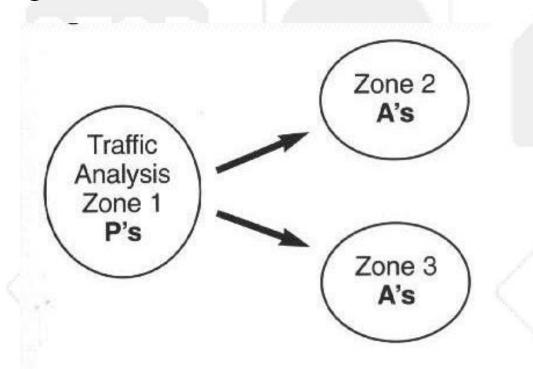
Actual Street System and River



Network Building

Computer Street System

Centroids



Trip Distribution (2nd Step)

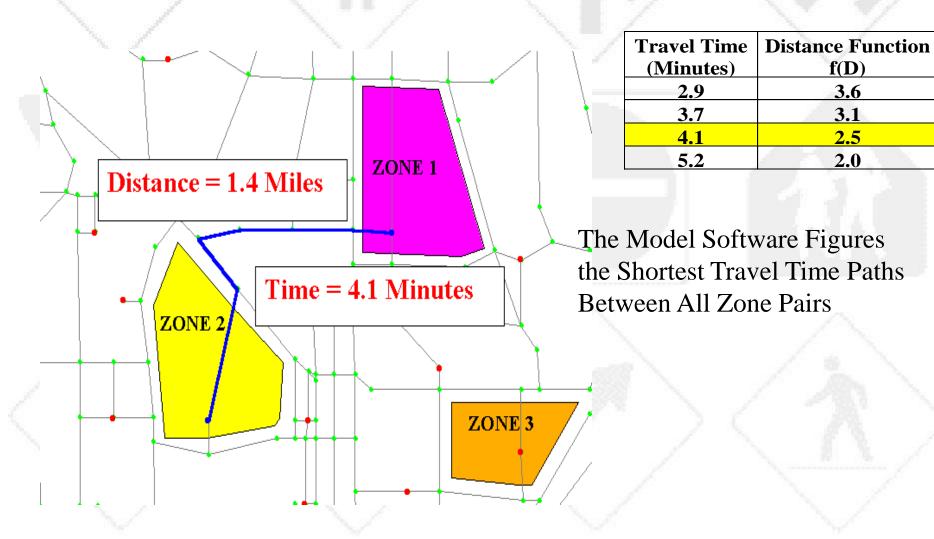
Trip Distribution

 Determines where trips are going to and coming from.

The Gravity Model

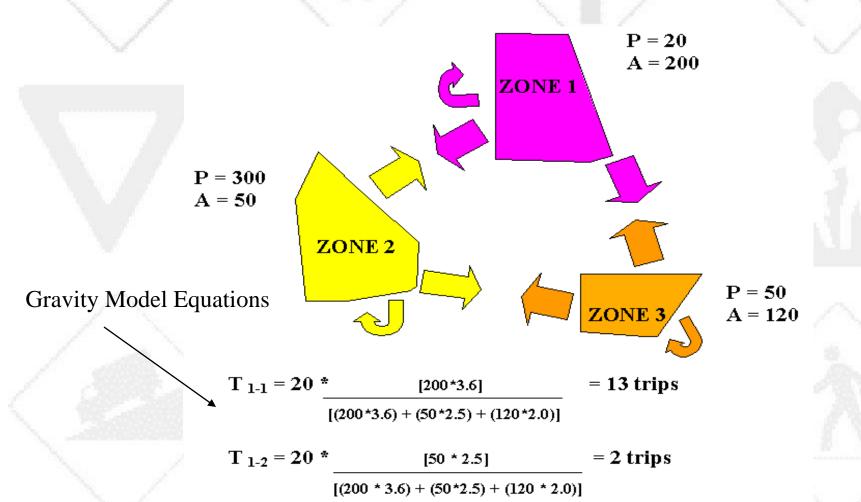
$$T_{ij} = P_i \times \left(\frac{A_j \times F_{ij} \times K_{ij}}{\sum_{j=1}^{n} A_j \times F_{ij} \times K_{ij}}\right)$$
Source: NTI

The Gravity Model

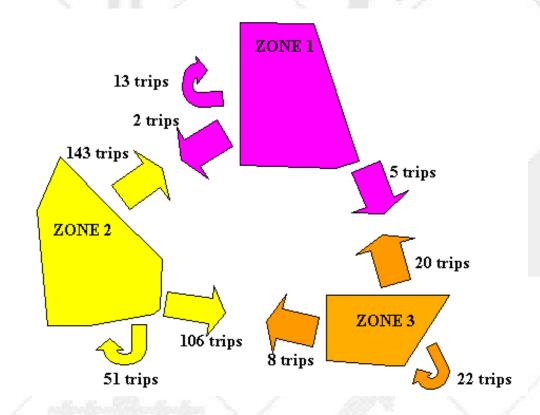

- Analogous to Newton's Law of Gravitation!
- The number of trips between zones are directly proportional to the number of productions at the origin zone and attractions at the destination zone and;
- Trips are inversely proportional to a function of the "friction" between zones measured in distance.

Friction or Impedance Factors

FF Inversely Proportional Time


FRIC	FAC.D	AT -	WordPad				
ile Ed	lit Vie	w I	nsert Forma	it Help			
		4	A 14	X 🛍		ь	
	Min	n n	HBW	нво	NHB	Truck	E-I
GF	1	1	2300	5325	9000	7500	10000
GF	2	1	1850	4850	7500	7000	8900
GF	3	1	1500	4388	6000	6300	7800
GF	4	1	1200	3850	4000	5600	6400
GF	5	1	1000	3400	2800	5000	5000
GF	6	1	870	2725	1800	3000	3300
GF	7	1	730	1650	1100	1100	1900
GF	8	1	620	1000	700	760	1250
GF	9	1	530	653	450	500	870
GF	10	1	450	420	330	380	670
GF	11	1	370	320	240	270	530
GF	12	1	315	254	185	230	420
GF	13	1	275	196	140	195	345
GF	14	1	240	163	110	170	290
GF	15	1	215	140	85	150	240
GF	16	1	195	120	65	135	205
GF	17	1	175	101	50	120	170
GF	18	1	160	89	38	106	145

Trip Distribution (Shortest Paths or Skim Trees)



Trip Distribution

Example that plugs in the numbers to the Gravity Model

Trip Distribution

Example Trip Table

Trip Matrix	Zone 1	Zone 2	Zone 3	Total Productions
Zone 1	13	2	5	20
Zone 2	143	51	106	300
Zone 3	20	8	22	50

Trip Distribution: Trip Matrix

	AD (Licensed to		-			7.3							
File Ed	lit Map Dataview	Selection M	latrix Layout	Tools Proced	ures Network	s/Paths Planni	ng Statistics	Window He	elp				_ =
	📙 📤 QuickSu	ım	- A		ﷺ∑ ∑		F						
	1	2	4	5	6	7	8	9	10	11	12	15	
	4.37	5.86	2.62	6.92	1.84	1.50	0.64	2.98	6.76	0.89	6.16	4.12	4
	26.23	63.09	8.81	26.12	14.51	4.52	1.88	26.11	75.00	6.88	43.80	41.04	43.
	16.74	34.52	4.66	12.13	12.54	2.32	0.95	18.44	55.65	5.01	31.17	29.49	31
	8.34	25.24	9.57	29.88	5.20	5.37	2.10	8.35	19.62	3.20	24.05	12.32	11
	1.84	3.19	1.93	4.30	1.34	0.98	0.40	1.78	4.31	0.59	4.05	2.37	2
	11.60	19.98	2.76	6.92	7.74	2.23	0.91	15.90	52.40	4.32	26.40	23.71	26
	4.24	7.44	1.07	2.63	2.68	0.87	0.35	6.76	17.54	1.45	8.74	8.66	9
	7.52	12.57	3.04	7.54	4.54	2.23	1.09	11.38	32.52	2.80	17.06	15.06	17
	6.75	11.72	5.94	14.83	4.30	4.77	1.84	9.45	21.76	2.82	19.25	11.13	12
	5.07	8.64	1.37	3.50	3.40	1.02	0.38	7.45	23.28	2.68	15.25	14.13	14
	27.87	50.13	9.90	25.40	18.62	7.71	2.81	38.98	122.14	14.18	92.91	69.62	72
	4.88	8.84	3.84	9.90	2.82	2.80	1.16	5.86	14.51	2.38	15.17	12.81	10
	5.09	8.76	3.73	9.45	2.85	2.81	1.19	6.39	16.35	2.22	14.52	10.49	1
	3.96	6.56	2.00	5.01	2.20	1.49	0.69	5.11	13.18	1.44	9.28	7.77	
	4.43	7.30	1.12	2.85	2.47	0.83	0.36	5.97	18.49	1.66	10.01	10.79	13
	12.94	19.96	2.55	6.65	7.11	1.76	0.76	16.33	50.52	4.39	26.44	29.59	34
	9.60	14.33	1.79	4.69	5.07	1.22	0.52	11.45	35.30	3.09	18.72	20.76	23
	7.31	10.07	1.27	3.34	3.73	0.74	0.33	7.84	23.84	2.04	12.30	13.98	15
	13.76	21.86	2.78	7.26	7.64	1.95	0.84	17.65	54.54	4.78	28.94	34.56	30
	15.16	23.17	9.42	24.62	8.46	6.05	2.64	16.07	41.47	5.46	35.87	32.35	28
	6.60	10.63	1.87	4.91	3.75	1.29	0.55	8.25	24.79	2.63	15.76	22.17	17
	11.29	18.27	2.92	7.63	6.38	2.16	0.92	14.66	44.67	4.49	26.96	30.32	33
	20.46	32.78	5.15	13.64	11.78	3.50	1.46	25.20	76.05	7.75	47.44	57.81	5
	11.21	17.69	2.39	6.39	6.23	1.63	0.69	13.38	40.61	3.96	24.41	28.85	26
	13.36	20.72	2.62	6.92	7.29	1.79	0.76	16.26	49.86	4.47	26.86	32.25	32
	3.60	5.65	0.84	2.12	2.02	0.61	0.28	4.88	13.18	1.17	7.10	7.74	9
	7.95	11.97	1.38	3.60	4.32	0.92	0.41	9.74	28.38	2.45	14.77	16.66	18
	0.50	0.62	0.30	0.75	0.22	0.18	0.08	0.35	0.80	0.11	0.73	0.49	(
	0.82	1.04	0.49	1.25	0.35	0.28	0.12	0.56	1.27	0.17	1.17	0.78	(
	21.08	31.31	4.09	10.90	9.48	2.54	1.05	18.97	54.97	4.93	31.12	31.94	34
	16.38	24.17	2.83	7.60	7.50	1.69	0.70	14.93	43.73	3.83	23.91	25.33	27
	35.40	51.18	5.56	15.25	17.09	3.24	1.39	34.80	106.07	9.26	57.15	62.92	66
	7.49	11.45	1.50	4.07	3.75	1.03	0.43	8.10	24.45	2.23	14.02	14.59	15
)	23 76	36 04	4 27	11 48	12 26	2 85	1 20	26 33	8N N7	7 15	44 56	47 83	51
to difference of	40			1					l				>
	.43 rows by 143 colu		<u> ~</u> ×	-,			_	work: d:\ear	\ames2000bina	rynetwork.net			
🗸 etar	T Oame	e e	Z≡ Mi∉	crosoft DowerPo	int de	TransCAD (Lices	send t				<i>j</i> 0 ∃2 12		10:11.00

The Four Steps

Trip Generation - How many trips?

Trip Distribution - Where are they going?

Mode Choices - By what mode?

Trip Assignment - What path are they taking?

Mode Split (3rd Step)

Mode Choice Models

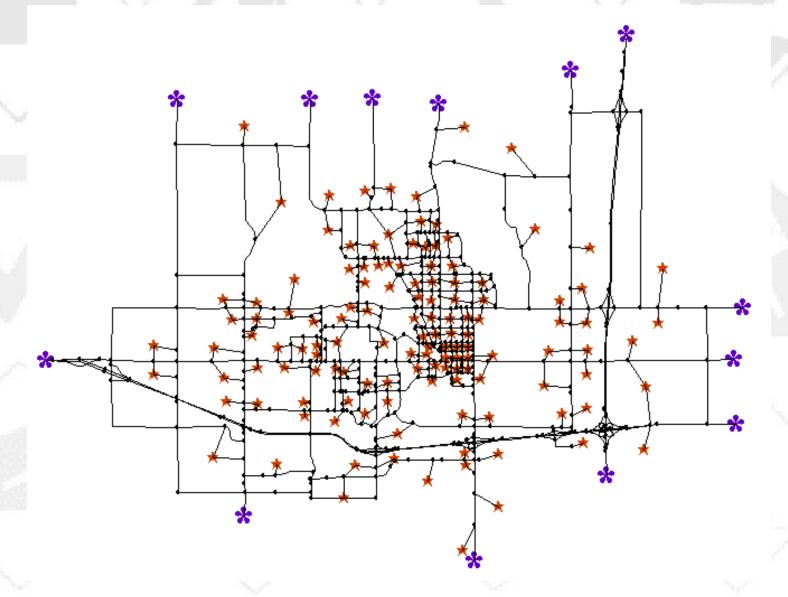
• Mode Choice Models model the travelers choice of which mode to take, ie car, transit, walk, etc.

Mode Choice Models

- Kern's Mode share is approximately:
 - Transit: 0.5%
 - Non-motorized: 13%
 - Single Occupancy Vehicle (SOV): 38%
 - High Occupancy Vehicle (HOV) 2+ pers: 47%

External Trip Estimation

- Good idea of internal travel (planning area)
- What about trips that leave the area?
- External Station Description
 - Somewhat similar to TAZ
 - Origin and Destination of Trips
- Two kinds of trips.
 - External to External
 - Internal to External or External to Internal


External Trip Estimation

- NCHRP 365 Process Travel Estimation Guide
- Urban Areas approximately 50,000 in Pop.
- 1st Step: Determine Through Trip Percentages
 - Larger Urban Areas have more EI/IE
- Through trip % based on:
 - ADT (cordon volume)
 - Size of Area
 - Functional Class of Facility
 - Vehicle Makeup (% trucks) (propensity for through trip)

External Trip Estimation

- 2nd Step: Distribution of EE Trips
 - Modlin equations to accomplish this.
 - Discuss in detail later in the semester.
- Result is EE matrix
- 3rd Step: EI/IE Productions and Attractions
 - Involved process to be covered in detail later.
 - EI/IE trips get distributed with the Gravity Model. EE trip matrix already distributed.

External Stations

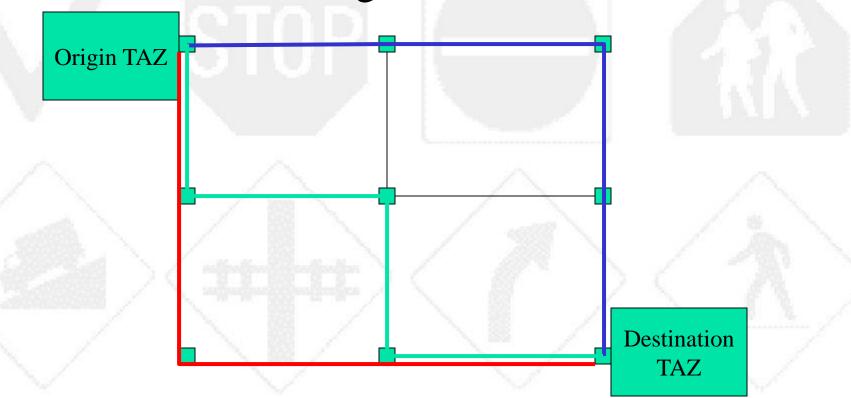
The Four Steps

Trip Generation - How many trips?

Trip Distribution - Where are they going?

Mode Choices - By what mode?

Trip Assignment - What path are they taking?


Traffic Assignment

 Now it is known how many trips are going between each zone pair.

■ What are we missing?

Trip Assignment (4th Step)

 Determining the path a trip will take between the origin and destination TAZ.

Traffic Assignment

- Now we know how many trips there are, where they are going and the mode they are using, but not yet the path they will take.
- Several assignment methods available
 - Uncongested Shortest Path
 - Human Behavior Stochastic
 - Congestion Capacity Restraint
 - Equilibrium No trip can decrease its travel time by taking an alternate route.

Trip Assignment – Path Selection Criteria


The Path a Trip will most likely take between two zones is based on:

- Travel Time or Friction
- Congestion or V/C Ratio
- Turn Penalties & Prohibitions
 - 15 second penalty for left turns, no right turns, etc.

Traffic Assignment Outputs

- Link volumes and speeds
- Turning movements at intersections
- Estimates of Regional VMT (vehicle miles traveled) and VHT (vehicle hours of travel)
- Congestion measures (V/C Ratio)

Loaded Network Volumes (ADT)

Loaded Network Flows

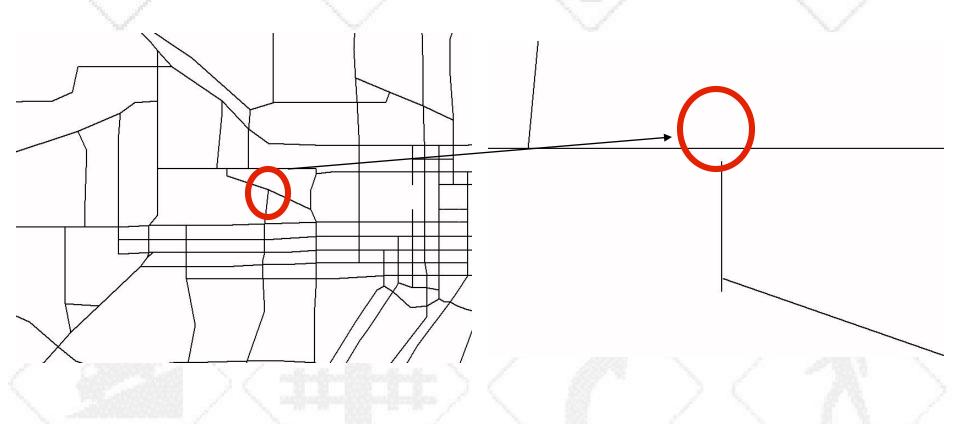
Validation and Model Errors

- Steps to Obtain a Reliable Model
 - Model Estimation
 - Model Calibration
 - Model Validation (Traffic Counts)
 - Model Application
 - Reasonableness Checks
 - Sensitivity Checks

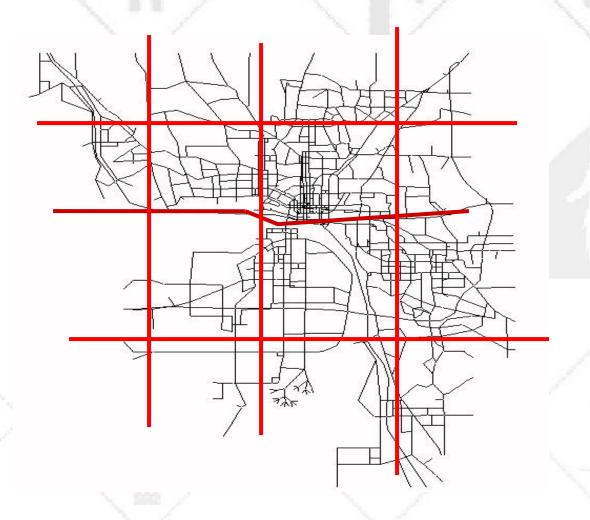
Steps to Obtain a Reliable Model

- Model Estimation
 - Statistical estimation of model parameters
 - Trip Generation Rates
 - Trip Length Frequency Distribution
- Model Calibration
 - Adjustment of model parameters until predicted travel matches observed travel

Steps to Obtain a Reliable Model


Model Validation

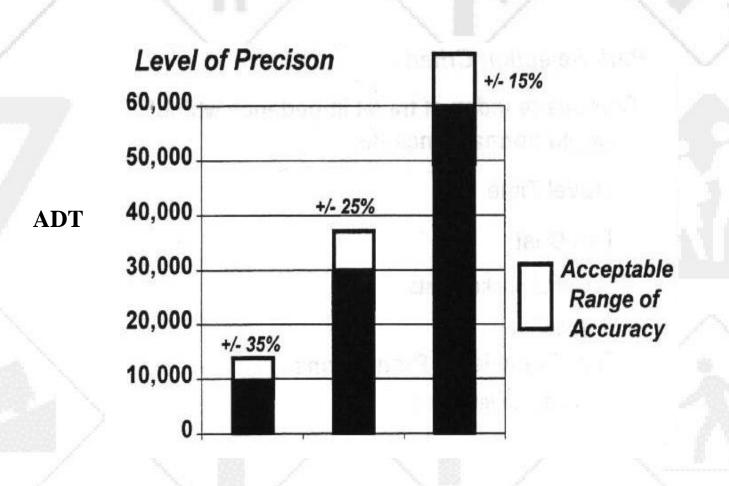
 Checking the model results against observed data and adjusting the parameters until model results fall within an acceptable range of error.

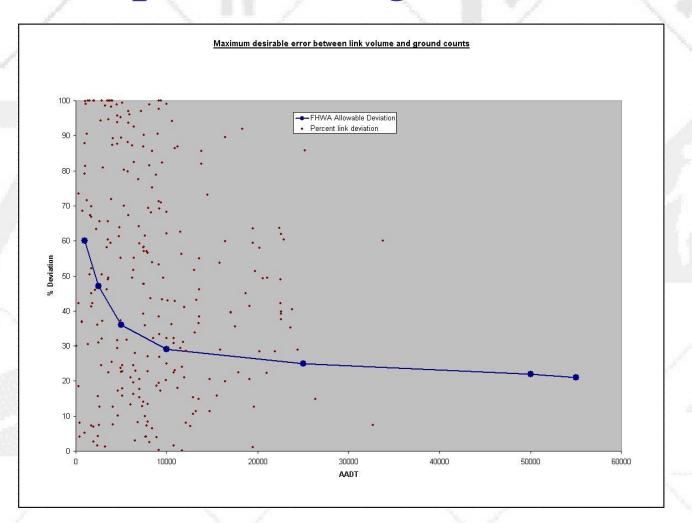

Model Application

- Checking the reasonableness of future year traffic projections
- Testing the sensitivity of the model to system or policy changes

Network Connectivity Check


Screen Line


Cordon Line


Cut Line

Acceptable Ranges of Error

Acceptable Ranges of Error (% deviation)

Two Models (Base and Future)?

- Two Time Frames (Two Models)
 - Base Year
 - Forecast Year
- Base Year Model
 - Calibrated to Match Traffic Counts
 - Replicates Existing Conditions
 - Gives Confidence for Future Projections

Two Models?

- Forecast or Planning Horizon Year
 - At least 20 Years into the Future
 - Forecast Population, Employment, etc.
 - Includes Planned Roadways and Development

- Trend for Interim Year Scenarios
 - Base, 5, 10 and 20

Questions?

Documentation:

http://www.kerncog.org/category/data-center/transportation-

modeling/